Let R be a ring and M(R) the set consisting of zero and primitive idempotents of R. We study the rings R for which M(R) is multiplicative. It is proved that if R has a complete finite set of primitive orthogonal idempotents, then R is a finite direct product of connected rings precisely when M(R) is multiplicative. We prove that if R is a (von Neumann) regular ring with M(R) multiplicative, then every primitive idempotent in R is central. It is also shown that this does not happen even in semihereditary and semiregular rings. Let R be an arbitrary ring with M(R) multiplicative and e. R be a primitive idempotent, then for every unit u is an element of R, it is proved that eue is a unit in eRe. We also prove that if M(R) is multiplicative, then two primitive idempotents e and f in R are conjugates, i.e., f = ueu(-1) for some u is an element of U(R), if and only if ef not equal 0.