LMI-based Criterion for the Robust Guaranteed Cost Control of 2-D Systems Described By the Roesser Model

被引:0
作者
Dai, Jiangtao [1 ]
Wang, Weiqun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Peoples R China
来源
2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2 | 2008年
关键词
Guaranteed cost control; Linear matrix inequality; Lyapunov methods; Robust stability; 2-D discrete systems; uncertain systems;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the problem of the guaranteed cost control for a class of two-dimensional (2-D) discrete systems described by the Roesser model with norm-bounded uncertainties. A linear matrix inequality (LMI)-based criterion for the existence of robust guaranteed cost controller is established Such controller render the closed-loop system asymptotically stable for all admissible uncertainties and guarantee an adequate level of performance.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2002, CONTROL FILTERING 2
[2]  
Bose N.K., 1982, APPL MULTIDIMENSIONA
[3]  
BRACEWELL RN, 1995, PRENTICE HALL SIGNAL
[4]   Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach [J].
Dhawan, Amit ;
Kar, Haranath .
SIGNAL PROCESSING, 2007, 87 (12) :3075-3085
[5]   LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model [J].
Dhawan, Amit ;
Kar, Haranath .
SIGNAL PROCESSING, 2007, 87 (03) :479-488
[6]   H∞ control and robust stabilization of two-dimensional systems in Roesser models [J].
Du, CL ;
Xie, LH ;
Zhang, CS .
AUTOMATICA, 2001, 37 (02) :205-211
[7]   MULTIDIMENSIONAL LINEAR ITERATIVE CIRCUITS - GENERAL PROPERTIES [J].
GIVONE, DD ;
ROESSER, RP .
IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (10) :1067-&
[8]   Robust optimal guaranteed cost control for 2D discrete systems [J].
Guan, X ;
Long, C ;
Duan, G .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (05) :355-361
[9]  
Huijun Gao, 2004, IMA Journal of Mathematical Control and Information, V21, P377, DOI 10.1093/imamci/21.4.377
[10]  
Kaczorek T., 1985, 2 DIMENSIONAL LINEAR