Quantum cascade lasers: The semiconductor solution for lasers in the mid- and far-infrared spectral regions

被引:16
作者
Sirtori, Carlo [1 ]
Dhillon, Sukhdeep
Faugeras, Clement
Vasanelli, A.
Mareadet, Xavier
机构
[1] Univ Paris 07, F-75251 Paris, France
[2] THALES Res & Technol, F-91767 Palaiseau, France
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2006年 / 203卷 / 14期
关键词
D O I
10.1002/pssa.200622389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum cascade laser is a semiconductor light source based on resonant tunnelling and optical transitions between quantised conduction band states. In these devices the principles of operation are not re lated to the physical properties of the constituent materials, but arise from an artificial potential designed using a sequence of very thin layers of different semiconductor materials. The quantum design implemented by highly sophisticated epitaxial growth, allows one to ascribe in semiconductor crystals this artificial potential with the desired electronic energy levels and wavefunctions. In recent years the performance of these devices has improved markedly and this semiconductor technology is now an attractive choice for the fabrication of mid-far infrared lasers in a very wide spectral range (3.5 - 160 mu m). At present, the best performances are obtained at wavelengths between 5 -12 mu m, where continuous-wave room temperature operation is routinely achieved and record average power in the order of 1 W has been demonstrated. The long wavelength region has been only recently explored and lasers operating temperatures do not currently exceed 150 K. Interesting nonlinear mixing of diode lasers with a THz laser has been recently demonstrated. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3533 / 3537
页数:5
相关论文
共 18 条
[1]   Nonlinear phase matching in THz semiconductor waveguides [J].
Berger, V ;
Sirtori, C .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2004, 19 (08) :964-970
[2]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[3]   Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides [J].
Dhillon, S ;
Alton, J ;
Barbieri, S ;
Sirtori, C ;
de Rossi, A ;
Calligaro, M ;
Beere, HE ;
Ritchie, D .
APPLIED PHYSICS LETTERS, 2005, 87 (07)
[4]   THz sideband generation at telecom wavelengths in a GaAs-based quantum cascade laser [J].
Dhillon, SS ;
Sirtori, C ;
Barbieri, S ;
de Rossi, A ;
Calligaro, M ;
Beere, HE ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2005, 87 (07)
[5]   Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a bound-to-continuum transition [J].
Diehl, L ;
Mentese, S ;
Müller, E ;
Grützmacher, D ;
Sigg, H ;
Gennser, U ;
Sagnes, I ;
Campidelli, Y ;
Kermarrec, O ;
Bensahel, D ;
Faist, J .
APPLIED PHYSICS LETTERS, 2002, 81 (25) :4700-4702
[6]   Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation [J].
Faist, J ;
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Rochat, M ;
Blaser, S .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :533-546
[7]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[8]   Short wavelength (λ∼3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs [J].
Faist, J ;
Capasso, F ;
Sivco, DL ;
Hutchinson, AL ;
Chu, SNG ;
Cho, AY .
APPLIED PHYSICS LETTERS, 1998, 72 (06) :680-682
[9]  
Faist J, 2004, INP GAAS BASED QUANT, P217
[10]   High-power room temperature emission quantum cascade lasers at a λ=9 μm [J].
Faugeras, C ;
Forget, S ;
Boer-Duchemin, E ;
Page, H ;
Bengloan, JY ;
Parillaud, O ;
Calligaro, M ;
Sirtori, C ;
Giovannini, M ;
Faist, K .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41 (12) :1430-1438