Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms

被引:34
作者
Reichel, S. [1 ]
Aubel, T. [1 ]
Patzig, A. [1 ]
Janneck, E. [1 ]
Martin, M. [1 ]
机构
[1] GEOS Ingenieurgesellschaft, Schwarze Kiefern 2, D-09633 Halsbrucke, Germany
关键词
Non-ferrous metallic ores; Lithium; Mica; Silicate bioleaching; Sulfur oxidizing bacteria; Membrane filtration;
D O I
10.1016/j.mineng.2017.02.012
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
There is about 60,000 t of lithium mica in the German part of the deposit in the Erzgebirge mountains. Lithium can be recovered by high pressure-high temperature leaching with sulfuric acid and further hydrometallurgical processing. Another idea, developed in the EU-project FAME, was to use sulfur oxidizing microbes to produce sulfuric acid and to extract lithium at moderate temperature and pressure conditions. Experiments were carried out in 2 L and 4 L batch reactors at 30 degrees C. After microbial transformation of elemental sulfur to sulfuric acid, the milled (< 45 gm) lithium mica was added at a pulp density of 5%. Up to 26% of lithium was extracted biologically compared to 16% by chemical leaching. The bioleaching solution contained about 1 g/L aluminium, 0.8 g/L iron and 0.2 g/L lithium and could be further processed hydrometallurgically. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 15 条
[1]   ENZYMATIC STUDIES OF IRON-OXIDIZING BACTERIUM FERROBACILLUS FERROOXIDANS - EVIDENCE FOR A GLYCOLYTIC PATHWAY AND KREBS CYCLE [J].
ANDERSEN, KJ ;
LUNDGREN, DG .
CANADIAN JOURNAL OF MICROBIOLOGY, 1969, 15 (01) :73-&
[2]   Use of lignosulfonate for elemental sulfur biooxidation and copper leaching [J].
Bouffard, Sylvie C. ;
Tshilombo, Alain ;
West-Sells, Paul G. .
MINERALS ENGINEERING, 2009, 22 (01) :100-103
[3]   Fluoride toxicity in a chalcocite bioleach heap process [J].
Brierley, J. A. ;
Kuhn, M. C. .
HYDROMETALLURGY, 2010, 104 (3-4) :410-413
[4]   Acid leaching of a copper ore by sulphur-oxidizing microorganisms [J].
de Oliveira, Debora M. ;
Sobral, Luis G. S. ;
Olson, Gregory J. ;
Olson, Susan B. .
HYDROMETALLURGY, 2014, 147 :223-227
[5]   Silicate mineral dissolution during heap bioleaching [J].
Dopson, Mark ;
Halinen, Anna-Kaisa ;
Rahrmen, Nelli ;
Bostrom, Dan ;
Sundkvist, Jan-Eric ;
Riekkola-Vanhanen, Marja ;
Kaksonen, Anna H. ;
Puhakka, Jaakko A. .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 99 (04) :811-820
[6]  
Jandova J., 2009, OBTAINING LI2CO3 ZIN, P53
[7]   Global lithium resources: Relative importance of pegmatite, brine and other deposits [J].
Kesler, Stephen E. ;
Gruber, Paul W. ;
Medina, Pablo A. ;
Keoleian, Gregory A. ;
Everson, Mark P. ;
Wallington, Timothy J. .
ORE GEOLOGY REVIEWS, 2012, 48 :55-69
[8]  
Kondas J., 2006, Acta Metallurgica Slovaca, V12, P197
[9]   Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs [J].
Mishra, D. ;
Kim, D. J. ;
Ralph, D. E. ;
Ahm, J. G. ;
Rhee, Y. H. .
HYDROMETALLURGY, 2007, 88 (1-4) :202-209
[10]   Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans [J].
Mishra, Debaraj ;
Kim, Dong-Jin ;
Ralph, D. E. ;
Ahn, Jong-Gwan ;
Rhee, Young-Ha .
WASTE MANAGEMENT, 2008, 28 (02) :333-338