Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network

被引:98
作者
Yin, Zhixiang [1 ,2 ,3 ]
Wu, Penghai [3 ,4 ]
Foody, Giles M. [5 ]
Wu, Yanlan [3 ,4 ]
Liu, Zihan [6 ]
Du, Yun [1 ]
Ling, Feng [1 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Key Lab Environm & Disaster Monitoring & Evaluat, Wuhan 430077, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Anhui Univ, Anhui Prov Key Lab Wetland Ecosyst Protect & Rest, Hefei 230601, Peoples R China
[4] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
[5] Univ Nottingham, Sch Geog, Univ Pk, Nottingham NG7 2RD, England
[6] Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 02期
基金
中国国家自然科学基金;
关键词
Land surface temperature; Spatiotemporal phenomena; Spatial resolution; Remote sensing; Earth; Artificial satellites; MODIS; Complex nonlinear relationship; deep learning; land surface temperature; spatiotemporal fusion; spatiotemporal-consistency (STC)-weighting; TEMPORAL RESOLUTION; GRAIN-YIELD; MODIS; WATER; REFLECTANCE; VALIDATION; RETRIEVAL; RADIANCE; TAXONOMY; IMAGERY;
D O I
10.1109/TGRS.2020.2999943
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the tradeoff between spatial and temporal resolutions commonly encountered in remote sensing, no single satellite sensor can provide fine spatial resolution land surface temperature (LST) products with frequent coverage. This situation greatly limits applications that require LST data with fine spatiotemporal resolution. Here, a deep learning-based spatiotemporal temperature fusion network (STTFN) method for the generation of fine spatiotemporal resolution LST products is proposed. In STTFN, a multiscale fusion convolutional neural network is employed to build the complex nonlinear relationship between input and output LSTs. Thus, unlike other LST spatiotemporal fusion approaches, STTFN is able to form the potentially complicated relationships through the use of training data without manually designed mathematical rules making it is more flexible and intelligent than other methods. In addition, two target fine spatial resolution LST images are predicted and then integrated by a spatiotemporal-consistency (STC)-weighting function to take advantage of STC of LST data. A set of analyses using two real LST data sets obtained from Landsat and moderate resolution imaging spectroradiometer (MODIS) were undertaken to evaluate the ability of STTFN to generate fine spatiotemporal resolution LST products. The results show that, compared with three classic fusion methods [the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), the spatiotemporal integrated temperature fusion model (STITFM), and the two-stream convolutional neural network for spatiotemporal image fusion (StfNet)], the proposed network produced the most accurate outputs [average root mean square error (RMSE) 1.40 C and average structural similarity (SSIM) 0.971].
引用
收藏
页码:1808 / 1822
页数:15
相关论文
共 53 条
[1]   A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales [J].
Anderson, M. C. ;
Norman, J. M. ;
Kustas, W. P. ;
Houborg, R. ;
Starks, P. J. ;
Agam, N. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) :4227-4241
[2]   High-resolution urban thermal sharpener (HUTS) [J].
Dominguez, Anthony ;
Kleissl, Jan ;
Luvall, Jeffrey C. ;
Rickman, Douglas L. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (07) :1772-1780
[3]   Validation of Collection 6 MODIS land surface temperature product using in situ measurements [J].
Duan, Si-Bo ;
Li, Zhao-Liang ;
Li, Hua ;
Goettsche, Frank-M ;
Wu, Hua ;
Zhao, Wei ;
Leng, Pei ;
Zhang, Xia ;
Coll, Cesar .
REMOTE SENSING OF ENVIRONMENT, 2019, 225 :16-29
[4]   Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data [J].
Duan, Si-Bo ;
Li, Zhao-Liang ;
Wu, Hua ;
Leng, Pei ;
Gao, Maofang ;
Wang, Chenguang .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 70 :84-92
[5]   Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece - climate change implications [J].
Eleftheriou, Dimitrios ;
Kiachidis, Kyriakos ;
Kalmintzis, Georgios ;
Kalea, Argiro ;
Bantasis, Christos ;
Koumadoraki, Paraskevi ;
Spathara, Maria Eleni ;
Tsolaki, Angeliki ;
Tzampazidou, Maria Irini ;
Gemitzi, Alexandra .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 616 :937-947
[6]   Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes [J].
Elsayed, Salah ;
Elhoweity, Mohamed ;
Ibrahim, Hazem H. ;
Dewir, Yaser Hassan ;
Migdadi, Hussein M. ;
Schmidhalter, Urs .
AGRICULTURAL WATER MANAGEMENT, 2017, 189 :98-110
[7]   Global land cover mapping from MODIS: algorithms and early results [J].
Friedl, MA ;
McIver, DK ;
Hodges, JCF ;
Zhang, XY ;
Muchoney, D ;
Strahler, AH ;
Woodcock, CE ;
Gopal, S ;
Schneider, A ;
Cooper, A ;
Baccini, A ;
Gao, F ;
Schaaf, C .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :287-302
[8]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[9]   Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery [J].
Gao, Feng ;
Anderson, Martha C. ;
Zhang, Xiaoyang ;
Yang, Zhengwei ;
Alfieri, Joseph G. ;
Kustas, William P. ;
Mueller, Rick ;
Johnson, David M. ;
Prueger, John H. .
REMOTE SENSING OF ENVIRONMENT, 2017, 188 :9-25
[10]   Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging [J].
Guo, Jiuxin ;
Tian, Guangli ;
Zhou, Yi ;
Wang, Min ;
Ling, Ning ;
Shen, Qirong ;
Guo, Shiwei .
FIELD CROPS RESEARCH, 2016, 196 :463-472