Quantum Algorithm for Spectral Measurement with a Lower Gate Count

被引:80
作者
Poulin, David [1 ,2 ,3 ]
Kitaev, Alexei [4 ]
Steiger, Damian S. [5 ]
Hastings, Matthew B. [6 ,7 ]
Troyer, Matthias [5 ,7 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[3] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[4] CALTECH, Pasadena, CA 91125 USA
[5] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[6] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[7] Microsoft Res, Quantum Architecture & Computat Grp, Redmond, WA 98052 USA
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevLett.121.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present two techniques that can greatly reduce the number of gates required to realize an energy measurement, with application to ground state preparation in quantum simulations. The first technique realizes that to prepare the ground state of some Hamiltonian, it is not necessary to implement the time-evolution operator: any unitary operator which is a function of the Hamiltonian will do. We propose one such unitary operator which can be implemented exactly, circumventing any Taylor or Trotter approximation errors. The second technique is tailored to lattice models, and is targeted at reducing the use of generic single-qubit rotations, which are very expensive to produce by standard fault tolerant techniques. In particular, the number of generic single-qubit rotations used by our method scales with the number of parameters in the Hamiltonian, which contrasts with a growth proportional to the lattice size required by other techniques.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]  
AHARONOV A., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
[4]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176
[5]  
[Anonymous], ARXIV161006546
[6]  
[Anonymous], ARXIVQUANTPH0402171
[7]  
[Anonymous], 2002, CLASSICAL QUANTUM CO
[8]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[9]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[10]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)