Numerical simulation of droplet behavior on an inclined plate using the Moving Particle Semi-implicit method

被引:4
|
作者
Hattori, Tsuyoshi [1 ]
Koshizuka, Seiichi [2 ]
机构
[1] DENSO CORP, 1-1 Showa Cho, Kariya, Aichi 4488661, Japan
[2] Univ Tokyo, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
来源
MECHANICAL ENGINEERING JOURNAL | 2019年 / 6卷 / 05期
关键词
MPS method; Droplet; Surface tension; Contact angle; Wettability; Droplet retention; Droplet sliding; Critical sliding angle;
D O I
10.1299/mej.19-00204
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents the numerical simulation methods used to reproduce droplet retention and sliding on an inclined surface by using the Moving Particle Semi-implicit (MPS) method. The MPS method is useful for simulating free surface flows with highly deformed gas-liquid interfaces, such as the behavior of condensed water in an evaporator. However, the existing MPS method cannot correctly reproduce the behavior of a droplet retention and droplet sliding on an inclined surface. In the simulation of a droplet on a wall using the existing MPS method, the simulated droplet starts sliding as soon as the wall is inclined even slightly and falls down at a very high speed. In this study, the details of the forces acting from the wall to a droplet are considered, and the boundary condition models that contain the resistance forces acting on the contact line of a droplet are proposed. Droplet retention and droplet sliding on an inclined plate are successfully simulated by using the proposed models. Furthermore, the simulation results are compared with the experimental results reported in literature. The relationship between the droplet volume and critical sliding angle and that between the inclination angle of a slope and droplet sliding velocity are each compared using the experimental results and evaluated both qualitatively and quantitatively; they show good agreement with the experimental results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Simulation of Multiliquid-Layer Sloshing With Vessel Motion by Using Moving Particle Semi-Implicit Method
    Kim, Kyung Sung
    Kim, Moo-Hyun
    Park, Jong-Chun
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (05):
  • [42] An improved moving particle semi-implicit method for interfacial flows
    Wen, Xiao
    Zhao, Weiwen
    Wan, Decheng
    APPLIED OCEAN RESEARCH, 2021, 117
  • [43] Moving-particle semi-implicit method for simulation of liquid sloshing on roll motion
    School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2008, 42 (11): : 1904 - 1907
  • [44] Large deformation simulations of geomaterials using moving particle semi-implicit method
    Shintaro Nohara
    Hiroshi Suenaga
    Kunihiko Nakamura
    Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10 (06) : 1122 - 1132
  • [45] Large deformation simulations of geomaterials using moving particle semi-implicit method
    Nohara, Shintaro
    Suenaga, Hiroshi
    Nakamura, Kunihiko
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (06) : 1122 - 1132
  • [46] Simulation of melt spreading over dry substrates with the moving particle Semi-implicit method
    Zhao, Lu
    Punetha, Maneesh
    Ma, Weimin
    Konovalenko, Alexander
    Bechta, Sevostian
    NUCLEAR ENGINEERING AND DESIGN, 2023, 405
  • [47] Moving particle semi-implicit method for fluid simulation with implicitly defined deforming obstacles
    Kanetsuki, Yasutomo
    Nakata, Susumu
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2015, 2 (01): : 63 - 75
  • [48] An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows
    Liu, Xiaoxing
    Morita, Koji
    Zhang, Shuai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 467 - 487
  • [49] Stability and accuracy analysis for viscous flow simulation by the moving particle semi-implicit method
    Duan, Guangtao
    Chen, Bin
    FLUID DYNAMICS RESEARCH, 2013, 45 (03)
  • [50] Enhancement of stability and accuracy of the moving particle semi-implicit method
    Khayyer, Abbas
    Gotoh, Hitoshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 3093 - 3118