Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations

被引:45
作者
Rockner, Michael [1 ,2 ]
Sun, Xiaobin [3 ,4 ]
Xie, Yingchao [3 ,4 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Jiangsu Normal Univ, Res Inst Math Sci, Xuzhou 221116, Jiangsu, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 01期
关键词
Averaging principle; McKean-Vlasov stochastic differential equations; Slow-fast; Poisson equation; Strong convergence order; REACTION-DIFFUSION EQUATIONS; DISTRIBUTION DEPENDENT SDES; AVERAGING PRINCIPLE; POISSON EQUATION; SYSTEMS; APPROXIMATION;
D O I
10.1214/20-AIHP1087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly converges to the solution of the corresponding averaged equation with convergence order 1/3 using the approach of time discretization. Furthermore, under stronger regularity conditions on the coefficients, we use the technique of Poisson equation to improve the order to 1/2, which is the optimal order of strong convergence in general.
引用
收藏
页码:547 / 576
页数:30
相关论文
共 41 条
[1]   Multi-timescale systems and fast-slow analysis [J].
Bertram, Richard ;
Rubin, Jonathan E. .
MATHEMATICAL BIOSCIENCES, 2017, 287 :105-121
[2]  
Bogoliubov N. N., 1961, ASYMPTOTIC METHODS T
[4]   Strong and weak orders in averaging for SPDEs [J].
Brehier, Charles-Edouard .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (07) :2553-2593
[5]   MEAN-FIELD STOCHASTIC DIFFERENTIAL EQUATIONS AND ASSOCIATED PDES [J].
Buckdahn, Rainer ;
Li, Juan ;
Peng, Shige ;
Rainer, Catherine .
ANNALS OF PROBABILITY, 2017, 45 (02) :824-878
[6]  
Cardaliaguet P., 2012, NOTES MEAN FIELD GAM
[7]   AVERAGING PRINCIPLE FOR NONAUTONOMOUS SLOW-FAST SYSTEMS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS: THE ALMOST PERIODIC CASE [J].
Cerrai, Sandra ;
Lunardi, Alessandra .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) :2843-2884
[8]   AVERAGING PRINCIPLE FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS WITH POLYNOMIAL NONLINEARITIES PERTURBED BY MULTIPLICATIVE NOISE [J].
Cerrai, Sandra .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) :2482-2518
[9]   A KHASMINSKII TYPE AVERAGING PRINCIPLE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS [J].
Cerrai, Sandra .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (03) :899-948
[10]   Averaging principle for a class of stochastic reaction-diffusion equations [J].
Cerrai, Sandra ;
Freidlin, Mark .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (1-2) :137-177