Ganymede MHD Model: Magnetospheric Context for Juno's PJ34 Flyby

被引:28
作者
Duling, Stefan [1 ]
Saur, Joachim [1 ]
Clark, George [2 ]
Allegrini, Frederic [3 ]
Greathouse, Thomas [3 ]
Gladstone, Randy [3 ,4 ]
Kurth, William [5 ]
Connerney, John E. P. [6 ,7 ]
Bagenal, Fran [8 ]
Sulaiman, Ali H. [9 ]
机构
[1] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[3] Southwest Res Inst, San Antonio, TX USA
[4] Univ Texas San Antonio, San Antonio, TX USA
[5] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Space Res Corp, Annapolis, MD USA
[8] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[9] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA
基金
欧洲研究理事会;
关键词
Ganymede; Juno spacecraft; MHD model; magnetosphere; magnetohydrodynamics; simulation; MAGNETIC-FIELD; AURORA;
D O I
10.1029/2022GL101688
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
On 7 June 2021 the Juno spacecraft visited Ganymede and provided the first in situ observations since Galileo's last flyby in 2000. The measurements obtained along a one-dimensional trajectory can be brought into global context with the help of three-dimensional magnetospheric models. Here we apply the magnetohydrodynamic model of Duling et al. (2014, https://doi.org/10.1002/2013ja019554) to conditions during the Juno flyby. In addition to the global distribution of plasma variables we provide mapping of Juno's position along magnetic field lines, Juno's distance from closed field lines and detailed information about the magnetic field's topology. We find that Juno did not enter the closed field line region and that the boundary between open and closed field lines on the surface matches the poleward edges of the observed auroral ovals. To estimate the sensitivity of the model results, we carry out a parameter study with different upstream plasma conditions and other model parameters.
引用
收藏
页数:10
相关论文
共 41 条
[1]  
Allegrini F., 2022, GEOPHYS RES LETT, V49, DOI [10.1029/2022GL098682, DOI 10.1029/2022GL098682]
[2]   Flow of mass and energy in the magnetospheres of Jupiter and Saturn [J].
Bagenal, Fran ;
Delamere, Peter A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[3]  
Clark G., 2022, GEOPHYS RES LETT, DOI [10.1029/2022gl098077, DOI 10.1029/2022GL098077]
[4]   The Juno Magnetic Field Investigation [J].
Connerney, J. E. P. ;
Benn, M. ;
Bjarno, J. B. ;
Denver, T. ;
Espley, J. ;
Jorgensen, J. L. ;
Jorgensen, P. S. ;
Lawton, P. ;
Malinnikova, A. ;
Merayo, J. M. ;
Murphy, S. ;
Odom, J. ;
Oliversen, R. ;
Schnurr, R. ;
Sheppard, D. ;
Smith, E. J. .
SPACE SCIENCE REVIEWS, 2017, 213 (1-4) :39-138
[5]   The role of the Hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study [J].
Dorelli, J. C. ;
Glocer, Alex ;
Collinson, Glyn ;
Toth, Gabor .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (07) :5377-5392
[6]  
Duling Stefan, 2022, Zenodo, DOI 10.5281/ZENODO.7105334
[7]  
Duling Stefan, 2022, Zenodo, DOI 10.5281/ZENODO.7096938
[8]   Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model [J].
Duling, Stefan ;
Saur, Joachim ;
Wicht, Johannes .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (06) :4412-4440
[9]  
Ebert R. W., 2022, GEOPHYS RES LETT, DOI [10.1029/2022gl098682, DOI 10.1029/2022GL098682]
[10]   On the formation of Ganymede's surface brightness asymmetries: Kinetic simulations of Ganymede's magnetosphere [J].
Fatemi, S. ;
Poppe, A. R. ;
Khurana, K. K. ;
Holmstrm, M. ;
Delory, G. T. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (10) :4745-4754