Continuous-Wave Coherent Raman Spectroscopy via Plasmonic Enhancement

被引:9
作者
Monfared, Yashar E. [1 ]
Shaffer, Travis M. [2 ]
Gambhir, Sanjiv S. [2 ,3 ,4 ]
Hewitt, Kevin C. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[2] Stanford Univ, Dept Radiol, Mol Imaging Program, MIPS, Stanford, CA 94305 USA
[3] Bio X Program, Dept Bioengn, Stanford, CA USA
[4] Bio X Program, Dept Mat Sci & Engn, Stanford, CA USA
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
SCATTERING; SPECTRA;
D O I
10.1038/s41598-019-48573-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we report a successful combination of stimulated Raman spectroscopy (SRS) and surface-enhanced Raman scattering (SERS) using cw laser sources and gold/silica nanoparticles with embedded reporter molecules. We describe the preparation method for our gold/silica nanoparticles as well as the effect of probe wavelength, pump and probe power, polarization and sample concentration on the cwSESRS signal. Altogether, a stable -12 orders of magnitude enhancement in the stimulated Raman signal is achieved because of the amplification of both pump and probe beams, leading to the detection of pico-molar nanoparticle concentrations, comparable to those of SERS. The coherent Raman spectra matches the incoherent conventional Raman spectra of the reporter molecules. Unlike conventional incoherent SERS this approach generates a coherent stimulated signal of microwatt intensities, opening the field to applications requiring a coherent beam, such as Molecular Holography.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis
    Alattar, Nebras
    Daud, Hasbullah
    Al-Majmaie, Rasoul
    Zeulla, Domonic
    Al-Rubeai, Mohameed
    Rice, James H.
    [J]. APPLIED OPTICS, 2018, 57 (22) : E184 - E189
  • [2] High repetition-rate femtosecond stimulated Raman spectroscopy with fast acquisition
    Ashner, Matthew N.
    Tisdale, William A.
    [J]. OPTICS EXPRESS, 2018, 26 (14): : 18331 - 18340
  • [3] Badioli M, 2010, OSA TECHNICAL DIGEST
  • [4] Bi X., 2012, OSA TECHNICAL DIGEST
  • [5] Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules
    Blackie, Evan J.
    Le Ru, Eric C.
    Etchegoin, Pablo G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (40) : 14466 - 14472
  • [6] Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation
    Chen, Shuo
    Lin, Xiaoqian
    Yuen, Clement
    Padmanabhan, Saraswathi
    Beuerman, Roger W.
    Liu, Quan
    [J]. OPTICS EXPRESS, 2014, 22 (10): : 12102 - 12114
  • [7] Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy
    Chng, B. X. K.
    van Dijk, T.
    Bhargava, R.
    Carney, P. S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (33) : 21348 - 21355
  • [8] Surface-Enhanced Raman Scattering Nanoparticles for Multiplexed Imaging of Bladder Cancer Tissue Permeability and Molecular Phenotype
    Davis, Ryan M.
    Kiss, Bernhard
    Trivedi, Dharati R.
    Metzner, Thomas J.
    Liao, Joseph C.
    Gambhir, Sanjiv S.
    [J]. ACS NANO, 2018, 12 (10) : 9669 - 9679
  • [9] Predicting Raman Spectra Using Density Functional Theory
    Fairchild, Steven Z.
    Bradshaw, Charles F.
    Su, Wansheng
    Guharay, Samar K.
    [J]. APPLIED SPECTROSCOPY, 2009, 63 (07) : 733 - 741
  • [10] Foti A., 2015, NANOSPECTROSCOPY, V1, P26, DOI DOI 10.1515/NANSP-2015-0001