On some combinatorial identities and harmonic sums

被引:25
作者
Batir, Necdet [1 ]
机构
[1] Nevsehir HBV Univ, Dept Math, TR-50300 Nevsehir, Turkey
关键词
Harmonic sums; Riemann zeta function; combinatorial identities; Apery constant; Boole's formula; harmonic numbers; generalized harmonic numbers; Bell polynomials; Stirling numbers; HYPERGEOMETRIC-SERIES; STIRLING NUMBERS; EULER;
D O I
10.1142/S179304211750097X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any m, n epsilon N we first give new proofs for the following well-known combinatorial identities S-n(m) = Sigma(n)(k=1) ((n)(k)) (-1)(k-1) /k(m) = Sigma n >= r1 >= r2 >=. . . >= r(m)>= 1 1 / r1r2 . . . r(m) and Sigma(n)(k=1) (-1)(n-k) ((n)(k)) k(n) = n!, and then we produce the generating function and an integral representation for S-n(m). Using them we evaluate many interesting finite and infinite harmonic sums in closed form. For example, we show that zeta(3) = 1 / 9 Sigma(infinity)(n=1) H(3)n + 3H(n)H(n)((2)) + 2H(n)((3)) / 2(n), and zeta(5) = 2 / 45 Sigma(infinity)(n=1) H-n(4) + 6H(n)(2)H ((2))(n) + 8H(n)H(n)((3)) + 3(H-n((2)))(2) + 6H(n)((4)) / n2(n), where H-n((i)) are generalized harmonic numbers defined below.
引用
收藏
页码:1695 / 1709
页数:15
相关论文
共 38 条
[1]   On Stirling numbers and Euler sums [J].
Adamchik, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 79 (01) :119-130
[2]  
Alzer H, 2014, AUSTRALAS J COMB, V59, P333
[3]  
[Anonymous], AM MATH MONTHLY
[4]  
[Anonymous], INTEGERS
[5]  
[Anonymous], RAMANUJANS NOTEBOO 1
[6]  
[Anonymous], ARXIV10012835V2MATHC
[7]  
[Anonymous], P STEKLOV I MATH
[8]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[9]  
[Anonymous], INTEGERS
[10]  
[Anonymous], INTRO CLASSICAL REAL