Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)

被引:154
|
作者
Kawabata, Daisaku [1 ]
Bandibas, Joel [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
关键词
2004 Mid Niigata Prefecture earthquake; Landslide susceptibility; Artificial Neural Network (ANN); Geologic substrata; ASTER satellite image; DEM; HAZARD; MOUNTAINS; ZONATION; NORTH; AREA; GIS;
D O I
10.1016/j.geomorph.2009.06.006
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of properties and lives caused by this type of geological hazard. This study focuses on the development of an accurate and efficient method of data integration, processing and generation of a landslide susceptibility map using an ANN and data from ASTER images. The method contains two major phases. The first phase is the data integration and analysis, and the second is the Artificial Neural Network training and mapping. The data integration and analysis phase involve GIS based statistical analysis relating landslide occurrence to geological and DEM (digital elevation model) derived geomorphological parameters. The parameters include slope, aspect, elevation, geology, density of geological boundaries and distance to the boundaries. This phase determines the geological and geomorphological factors that are significantly correlated with landslide occurrence. The second phase further relates the landslide susceptibility index to the important geological and geomorphological parameters identified in the first phase through ANN training. The trained ANN is then used to generate a landslide susceptibility map. Landslide data from the 2004 Niigata earthquake and a DEM derived from ASTER images were used. The area provided enough landslide data to check the efficiency and accuracy of the developed method. Based on the initial results of the experiment, the developed method is more than 90% accurate in determining the probability of landslide occurrence in a particular area. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 50 条
  • [1] Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS
    Choi, Jaewon
    Oh, Hyun-Joo
    Lee, Hong-Jin
    Lee, Changwook
    Lee, Saro
    ENGINEERING GEOLOGY, 2012, 124 : 12 - 23
  • [2] Validation of an artificial neural network model for landslide susceptibility mapping
    Choi, Jaewon
    Oh, Hyun-Joo
    Won, Joong-Sun
    Lee, Saro
    ENVIRONMENTAL EARTH SCIENCES, 2010, 60 (03) : 473 - 483
  • [3] Artificial neural network ensembles applied to the mapping of landslide susceptibility
    Bragagnolo, L.
    da Silva, R., V
    Grzybowski, J. M., V
    CATENA, 2020, 184
  • [4] Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
    Lee, S
    Ryu, JH
    Won, JS
    Park, HJ
    ENGINEERING GEOLOGY, 2004, 71 (3-4) : 289 - 302
  • [5] Validation of an artificial neural network model for landslide susceptibility mapping
    Jaewon Choi
    Hyun-Joo Oh
    Joong-Sun Won
    Saro Lee
    Environmental Earth Sciences, 2010, 60 : 473 - 483
  • [6] Assessment of shallow landslide susceptibility using an artificial neural network
    Zeng B.
    Chen X.
    Arabian Journal of Geosciences, 2021, 14 (6)
  • [8] Estimating landslide susceptibility through a artificial neural network classifier
    Tsangaratos, Paraskevas
    Benardos, Andreas
    NATURAL HAZARDS, 2014, 74 (03) : 1489 - 1516
  • [9] Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment
    Arnone, Elisa
    Francipane, Antonio
    Noto, Leonardo V.
    Scarbaci, Antonino
    La Loggia, Goffredo
    JOURNAL OF HYDROINFORMATICS, 2014, 16 (02) : 502 - 515
  • [10] Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree
    Oh, Hyun-Joo
    Lee, Saro
    APPLIED SCIENCES-BASEL, 2017, 7 (10):