Invariant difference schemes and their application to sl(2, R) invariant ordinary differential equations

被引:13
|
作者
Rebelo, R. [1 ,2 ]
Winternitz, P. [1 ,2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CONTINUOUS SYMMETRIES;
D O I
10.1088/1751-8113/42/45/454016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exposition of a method of discretizing ordinary differential equations while preserving their Lie point symmetries. This method is very general and can be applied to any ordinary differential equations (ODE) with a nontrivial symmetry group. The method is applied to obtain numerical solutions of second- and third-order ODEs invariant under two different realizations of sl(2, R). The symmetry preserving method is shown to provide a better qualitative description of solutions than standard methods. In particular it provides solutions that are valid close to singularities and beyond them.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Invariant Manifolds for Differential Equations
    张伟年
    Acta Mathematica Sinica,English Series, 1992, (04) : 375 - 398
  • [42] INVARIANT DIFFERENCE SCHEMES WITH POLYNOMIAL VISCOSITY MATRIX
    FEDOTOVA, ZI
    SHOKIN, YI
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (01): : 51 - 53
  • [43] Invariant codes, difference schemes, and distributive quasigroups
    André Guerino Castoldi
    Anderson Novaes Martinhão
    Emerson L. MonteCarmelo
    Otávio J. N. T. N. dos Santos
    Computational and Applied Mathematics, 2022, 41
  • [44] Invariant codes, difference schemes, and distributive quasigroups
    Castoldi, Andre Guerino
    Martinhao, Anderson Novaes
    MonteCarmelo, Emerson L.
    dos Santos, Otavio J. N. T. N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [45] Invariant Manifolds for Analytic Difference Equations
    de la Llave, Rafael
    Lomeli, Hector E.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1614 - 1651
  • [46] Invariant manifolds for a singular ordinary differential equation
    Bianchini, Stefano
    Spinolo, Laura V.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) : 1788 - 1827
  • [47] Classification of left-invariant Einstein metrics on SL(2, R) x SL(2, R) that are bi-invariant under a one-parameter subgroup
    Cortes, Vicente
    Ehlert, Jeremias
    Haupt, Alexander S.
    Lindemann, David
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (02)
  • [48] ROSS,SL - INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS
    PONZO, PJ
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (04): : 619 - +
  • [49] ROSS,SL - INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS
    SCHWEIGE.F
    MONATSHEFTE FUR MATHEMATIK, 1967, 71 (02): : 188 - +
  • [50] Orthogonal polynomials in approximation theory and stability of difference schemes for ordinary differential equations
    Pospelov, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (06): : 72 - 78