Extensions of Hopf algebras and Lie bialgebras

被引:20
|
作者
Masuoka, A [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
extension; Hopf algebra; Lie bialgebra; Lie algebra cohomology; continuous modules;
D O I
10.1090/S0002-9947-00-02394-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f, g be finite-dimensional Lie algebras over a field of characteristic zero. Regard f and g*, the dual Lie coalgebra of g, as Lie bialgebras with zero cobracket and zero bracket, respectively. Suppose that a matched pair (f, g*) of Lie bialgebras is given, which has structure maps -->, rho. Then it induces a matched pair (Uf, Ug(o), -->', rho') of Hopf algebras, where Uf is the universal envelope of f and U g(o) is the Hopf dual of Ug. We show that the group Opext(Uf, Ug(o)) of cleft Hopf algebra extensions associated with (Uf, U g(o), -->', rho') is naturally isomorphic to the group Opext(f, g*) of Lie bialgebra extensions associated with (f, g*, -->, rho). An exact sequence involving either of these groups is obtained, which is a variation of the exact sequence due to G.I. Kac. If g = [g, g], there follows a bijection between the set Ext(Uf, Ug(o)) of all cleft Hopf algebra extensions of Uf by Ug(o) and the set Ext(f, g*) of all Lie bialgebra extensions of f by g*.
引用
收藏
页码:3837 / 3879
页数:43
相关论文
共 50 条
  • [31] Quantization of Lie Bialgebras, Part VI: Quantization of Generalized Kac–Moody Algebras
    Pavel Etingof
    David Kazhdan
    Transformation Groups, 2008, 13 : 527 - 539
  • [32] Compatible Lie Bialgebras
    Wu Ming-Zhong
    Bai Cheng-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (06) : 653 - 664
  • [33] Compatible Lie Bialgebras
    吴明忠
    白承铭
    Communications in Theoretical Physics, 2015, 63 (06) : 653 - 664
  • [34] QUANTIZATION OF LIE BIALGEBRAS, PART VI: QUANTIZATION OF GENERALIZED KAC-MOODY ALGEBRAS
    Etingof, Pavel
    Kazhdan, David
    TRANSFORMATION GROUPS, 2008, 13 (3-4) : 527 - 539
  • [35] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279
  • [36] A note on split extensions of bialgebras
    Garcia-Martinez, Xabier
    Van der Linden, Tim
    FORUM MATHEMATICUM, 2018, 30 (05) : 1089 - 1095
  • [37] Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
    Bai, Chengming
    Guo, Li
    Sheng, Yunhe
    FORUM MATHEMATICUM, 2022, 34 (04) : 989 - 1013
  • [38] Extending Structures for Lie Bialgebras
    Hong, Yanyong
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 783 - 798
  • [39] A triple construction for Lie bialgebras
    Grabowski, JE
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 221 (02) : 281 - 301
  • [40] Hamiltonian type Lie bialgebras
    Bin Xin
    Guang-ai Song
    Yu-cai Su
    Science in China Series A: Mathematics, 2007, 50 : 1267 - 1279