In-situ plasma assisted formation of graphitic nanosheet supported N-doped carbon-coated antisite defectless LiFePO4 as a high-performance cathode material for lithium-ion batteries

被引:15
作者
Jiang, Zhongqing [1 ]
Zhang, Baoan [1 ]
Shen, Qiujie [1 ]
Jiang, Zhong-Jie [2 ,3 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Key Lab Opt Field Manipulat Zhejiang Prov, Hangzhou 310018, Zhejiang, Peoples R China
[2] South China Univ Technol, Coll Environm & Energy, New Energy Res Inst, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Univ Technol, Guangdong Engn & Technol Res Ctr Surface Chem Ene, Guangzhou 510006, Guangdong, Peoples R China
关键词
Plasma discharge; Fe-Li(center dot)-antisite-free; LiFePO4; nanoparticles; Nitrogen doped carbon; Graphitic nanosheet; CHEMICAL-VAPOR-DEPOSITION; HIGH-RATE CAPABILITY; ELECTROCHEMICAL PERFORMANCE; POLYMERIZATION RESTRICTION; RECHARGEABLE LITHIUM; CONDUCTIVE NETWORK; ENERGY-STORAGE; GRAPHENE; POWER; COMPOSITE;
D O I
10.1016/j.jallcom.2019.07.309
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, an in situ plasma method is developed for the synthesis of Fe-Li(center dot)-antisite-free LiFePO4 nanoparticles with full nitrogen-doped carbon coating (NC) and graphitic nanosheet support (LFP@NC/ GNS). Briefly, plasma discharge promotes in-situ formation of graphitic nanosheets on LFP@NC via Fe(0-)catalyzed glucose pyrolysis and simultaneously removes Fe-Li(center dot)-antisites in LFP. The resultant LFP@NC/GNS shows enhanced reversible capacities as a cathode material for Li-ion batteries. Even at the super-high current rate of 150 C, LFP@NC/GNS still delivers a stable reversible capacity of 100.7 mAh g(-1). Furthermore, LFP@NC/GNS exhibits a super-long cycling stability with no apparent capacity drop when charged/ discharged at 10 C and 100 C for 1200 cycles. The absence of the Fe-Li(center dot) antisites is expected to play a significant role in the high performance of LFP@NC/GNS because it provides further expedited Li+ diffusion paths in the LFP lattices, thereby allowing for ready migration of Li+ ions and better utilization of LFP. The full NC coating and GNS support also aid the performance of LFP@NC/GNS significantly because both can improve the Li storage kinetics and utilization of the active material. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:864 / 873
页数:10
相关论文
共 69 条
[1]   The thermodynamic stability of intermediate solid solutions in LiFePO4 nanoparticles [J].
Abdellahi, A. ;
Akyildiz, O. ;
Malik, R. ;
Thornton, K. ;
Ceder, G. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (15) :5436-5447
[2]   Nonstoichiometric LiFePO4: Defects and Related Properties [J].
Axmann, P. ;
Stinner, C. ;
Wohlfahrt-Mehrens, M. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1636-1644
[3]   Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes [J].
Cantoro, M. ;
Hofmann, S. ;
Mattevi, C. ;
Pisana, S. ;
Parvez, A. ;
Fasoli, A. ;
Ducati, C. ;
Scardaci, V. ;
Ferrari, A. C. ;
Robertson, J. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
[4]   Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries [J].
Gong, Chunli ;
Xue, Zhigang ;
Wen, Sheng ;
Ye, Yunsheng ;
Xie, Xiaolin .
JOURNAL OF POWER SOURCES, 2016, 318 :93-112
[5]   LiFePO4/activated carbon/graphene composite with capacitive-battery characteristics for superior high-rate lithium-ion storage [J].
Guan, Yibiao ;
Shen, Jinran ;
Wei, Xufang ;
Zhu, Qizhen ;
Zheng, Xiaohui ;
Zhou, Shuqin ;
Xu, Bin .
ELECTROCHIMICA ACTA, 2019, 294 :148-155
[6]   A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries [J].
Ha, Jeonghyun ;
Park, Seung-Keun ;
Yu, Seung-Ho ;
Jin, Aihua ;
Jang, Byungchul ;
Bong, Sungyool ;
Kim, In ;
Sung, Yung-Eun ;
Piao, Yuanzhe .
NANOSCALE, 2013, 5 (18) :8647-8655
[7]  
HE T, 2018, ADV ENERGY MATER, V8
[8]  
Hoon H. S., 2015, CHEM-EUR J, V21, P2132
[9]   A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing [J].
Huang, Yuan ;
Liu, Hao ;
Gong, Li ;
Hou, Yanglong ;
Li, Quan .
JOURNAL OF POWER SOURCES, 2017, 347 :29-36
[10]   Porous C-LiFePO4-C composite microspheres with a hierarchical conductive architecture as a high performance cathode for lithium ion batteries [J].
Huang, Zhen-Dong ;
Oh, Sei-Woon ;
He, Yan-Bing ;
Zhang, Biao ;
Yang, Yu ;
Mai, Yiu-Wing ;
Kim, Jang-Kyo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (37) :19643-19645