A technical review of the challenges of powder recycling in the laser powder bed fusion additive manufacturing process

被引:9
|
作者
Soundarapandiyan, Gowtham [1 ,2 ]
Johnston, Carol [3 ]
Khan, Raja H. U. [3 ]
Chen, Bo [2 ,4 ]
Fitzpatrick, Michael E. [2 ]
机构
[1] Natl Struct Integr Res Ctr NSIRC, Granta Pk, Cambridge CB21 6AL, England
[2] Coventry Univ, Fac Engn Environm & Comp, Coventry, W Midlands, England
[3] TWI Ltd, Granta Pk, Cambridge, England
[4] Univ Leicester, Sch Engn, Leicester, Leics, England
来源
JOURNAL OF ENGINEERING-JOE | 2021年 / 2021卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
MECHANICAL-PROPERTIES; SPATTER GENERATION; TI-6AL-4V; BEHAVIOR; REUSE; MICROSTRUCTURE; METALLURGY; FEEDSTOCK; TITANIUM; ALLOY;
D O I
10.1049/tje2.12013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (L-PBF) is one of the most widely used additive manufacturing techniques for fabrication of components with complex geometries for various industrial applications including aerospace, medical and automotive. The unconsumed powder after part manufacturing is often recovered and recycled to improve process efficiency. However, some of the particles in the recycled powder can have different physical and chemical properties from those in the virgin powder owing to their exposure to the complex environment during the manufacturing process. In addition, some contaminants can be introduced in the recycled powder due to poor process control. A number of studies have been published in the past few years revealing the effects of powder recycling on the build properties. The present work aims to highlight the key phenomena during the manufacturing process that caused degradation to the recycled powder. Further to this, some comments, gaps and areas that deserve further detailed studies are also highlighted.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
    Kizhakkinan, Umesh
    Seetharaman, Sankaranarayanan
    Raghavan, Nagarajan
    Rosen, David W.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (11):
  • [2] Metal additive manufacturing by laser-powder bed fusion:Guidelines for process optimisation
    Obeidi, Muhannad Ahmed
    RESULTS IN ENGINEERING, 2022, 15
  • [3] Powder bed fusion process in additive manufacturing: An overview
    Singh, Riya
    Gupta, Akash
    Tripathi, Ojestez
    Srivastava, Sashank
    Singh, Bharat
    Awasthi, Ankita
    Rajput, S. K.
    Sonia, Pankaj
    Singhal, Piyush
    Saxena, Kuldeep K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 3058 - 3070
  • [4] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [5] A review of powder deposition in additive manufacturing by powder bed fusion
    Avrampos, Panagiotis
    Vosniakos, George-Christopher
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 74 : 332 - 352
  • [6] Additive manufacturing of ceramics via the laser powder bed fusion process
    Ullah, Abid
    Shah, Mussadiq
    Ali, Zulfiqar
    Asami, Karim
    Rehman, Asif Ur
    Emmelmann, Claus
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [7] REVIEW ON POWDER-BED LASER ADDITIVE MANUFACTURING OF INCONEL 718 PARTS
    Wang, Xiaoqing
    Gong, Xibing
    Chou, Kevin
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [8] Review on powder-bed laser additive manufacturing of Inconel 718 parts
    Wang, Xiaoqing
    Gong, Xibing
    Chou, Kevin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2017, 231 (11) : 1890 - 1903
  • [9] Laser Powder Bed Fusion of Powder Material: A Review
    Zhao, Xi
    Wang, Tong
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (06) : 1439 - 1454
  • [10] Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
    Sing, S. L.
    Yeong, W. Y.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (03) : 359 - 370