Selective laser melting of nanostructured Al-Y-Ni-Co alloy

被引:11
作者
Wang, Z. [1 ,6 ]
Scudino, S. [2 ,6 ]
Eckert, J. [3 ,4 ,6 ]
Prashanth, K. G. [3 ,5 ,6 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Near Net Shape Forming Metall M, Guangzhou 510640, Peoples R China
[2] Leibniz IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany
[3] Austrian Acad Sci, Erich Schmid Inst Mat Sci, Jahnstr 12, A-8700 Leoben, Austria
[4] Univ Leoben, Dept Mat Phys, Jahnstr 12, A-8700 Leoben, Austria
[5] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
[6] Vellore Inst Technol, Sch Mech Engn, CBCMT, Vellore 632014, Tamil Nadu, India
基金
中国国家自然科学基金;
关键词
Aluminum alloys; Additive manufacturing; Selective laser melting; Mechanical properties; Nanostructure; MECHANICAL-PROPERTIES; HEAT-TREATMENT; MICROSTRUCTURE; STRENGTH; BEHAVIOR; COMPOSITES; ALSI10MG;
D O I
10.1016/j.mfglet.2020.06.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A bulk nanostructured Al-Y-Ni-Co alloy has been synthesized from gas atomized powder by selective laser melting (SLM). The SLM sample exhibits a hybrid microstructure consisting of nano- and submicron-sized intermetallic phases (Al3Y and Al9Co2) in the alpha-Al matrix. Moreover, it shows the presence of solidification cracks and these solidification cracks can be avoided by introducing substrate plate heating. The SLM processed Al-Y-Ni-Co alloy shows a very high yield strength (625 MPa) combined with about 25% fracture strain, indicating that SLM is a highly versatile processing route not only capable to fabricate conventional alloys but also can process such novel materials. (C) 2020 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 37 条
[1]   The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J].
Aboulkhair, Nesma T. ;
Maskery, Ian ;
Tuck, Chris ;
Ashcroft, Ian ;
Everitt, Nicola M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 667 :139-146
[2]   Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting [J].
Attar, H. ;
Loeber, L. ;
Funk, A. ;
Calin, M. ;
Zhang, L. C. ;
Prashanth, K. G. ;
Scudino, S. ;
Zhang, Y. S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 :350-356
[3]   Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder JettingSelection Guidelines [J].
Gokuldoss, Prashanth Konda ;
Kolla, Sri ;
Eckert, Juergen .
MATERIALS, 2017, 10 (06)
[4]   Laser additive manufacturing of metallic components: materials, processes and mechanisms [J].
Gu, D. D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) :133-164
[5]   Additive manufacturing of metals [J].
Herzog, Dirk ;
Seyda, Vanessa ;
Wycisk, Eric ;
Emmelmann, Claus .
ACTA MATERIALIA, 2016, 117 :371-392
[6]   Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J].
Inoue, A .
PROGRESS IN MATERIALS SCIENCE, 1998, 43 (05) :365-520
[7]   Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting [J].
Jia, Y. D. ;
Ma, P. ;
Prashanth, K. G. ;
Wang, G. ;
Yi, J. ;
Scudino, S. ;
Cao, F. Y. ;
Sun, J. F. ;
Eckert, J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 699 :548-553
[8]   Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting [J].
Kimura, Takahiro ;
Nakamoto, Takayuki ;
Mizuno, Masataka ;
Araki, Hideki .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 :593-602
[9]   Work hardening in selective laser melted Al-12Si alloy [J].
Konda Gokuldoss, Prashanth .
Material Design and Processing Communications, 2019, 1 (02)
[10]   Design of next-generation alloys for additive manufacturing [J].
Konda Gokuldoss P. .
Material Design and Processing Communications, 2019, 1 (04)