BACKLUND TRANSFORMATION OF A NON-ISOSPECTRAL KPESCS AND ITS NONLINEAR COUPLED SYSTEM

被引:1
作者
Sun, Ye-Peng [1 ]
Yu, Guo-Fu [2 ]
机构
[1] Shandong Econ Univ, Sch Math & Stat, Jinan 250014, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2009年 / 23卷 / 30期
基金
中国国家自然科学基金;
关键词
Non-isospectral KP equation; Backlund transformation; source generation procedure; self-consistent sources; Gramm-type determinant solution; nonlinear coupled system; SELF-CONSISTENT SOURCES; KADOMTSEV-PETVIASHVILI EQUATION; KDV EQUATION; DARBOUX TRANSFORMATIONS; SUPERPOSITION FORMULA; KP EQUATION; SOLITON; HIERARCHY; PFAFFIANIZATION; INTEGRATION;
D O I
10.1142/S0217984909021636
中图分类号
O59 [应用物理学];
学科分类号
摘要
A non-isospectral Kadomtsev-Petviashvili equation with self-consistent sources (KPESCS) is first derived by using the source generation procedure. Moreover, its bilinear Backlund transformation is obtained. Furthermore, a new nonlinear coupled system of the non-isospectral KPESCS and its exact solutions are established. The new coupled system cannot only be reduced to the non-isospectral KPESCS but can also be reduced to the coupled non-isospectral KP equation.
引用
收藏
页码:3581 / 3595
页数:15
相关论文
共 30 条
[1]  
ABLOWITZ MJ, 1991, SOLITON NONLINEAR EV, P95006
[2]   Lie algebraic structures of some (1+2)-dimensional Lax integrable systems [J].
Chen, DY ;
Xin, HW ;
Zhang, DJ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (04) :761-770
[3]   SOLITONS IN NONUNIFORM MEDIA [J].
CHEN, HH ;
LIU, CS .
PHYSICAL REVIEW LETTERS, 1976, 37 (11) :693-697
[4]   Exact solutions for the nonisospectral Kadomtshev-Petviashvili equation [J].
Deng, SF ;
Zhang, DJ ;
Chen, DY .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (09) :2383-2385
[5]   Pfaffianization of the discrete KP equation [J].
Gilson, CR ;
Nimmo, JJC ;
Tsujimoto, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10569-10575
[6]   EXACT INVERSE SCATTERING SOLUTION OF A NONLINEAR EVOLUTION EQUATION IN A NONUNIFORM MEDIUM [J].
GUPTA, MR .
PHYSICS LETTERS A, 1979, 72 (06) :420-422
[7]   N-SOLITON SOLUTION OF K-DV EQUATION WITH LOSS AND NONUNIFORMITY TERMS [J].
HIROTA, R ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 41 (06) :2141-2142
[8]   HIERARCHIES OF COUPLED SOLITON-EQUATIONS .1. [J].
HIROTA, R ;
OHTA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :798-809
[9]  
HIROTA R, 1992, DIRECT METHODS SOLIT, P95006
[10]   The higher-order KdV equation with a source and nonlinear superposition formula [J].
Hu, XB .
CHAOS SOLITONS & FRACTALS, 1996, 7 (02) :211-215