A Fast Converging and Consistent Teaching-Learning-Self-Study Algorithm for Optimization: A Case Study of Tuning of LSSVM Parameters for the Prediction of NOx Emissions from a Tangentially Fired Pulverized Coal Boiler

被引:10
作者
Ahmed, Faisal [1 ,2 ]
Kim, Jin-Kuk [1 ]
Khan, Asad Ullah [2 ]
Park, Ho Young [3 ]
Yeo, Yeong Koo [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, 222 Wangsibriro, Seoul 04763, South Korea
[2] COMSATS Inst Informat Technol, Dept Chem Engn, Lahore, Pakistan
[3] KEPRI, 105 Munji Ro, Daejeon 305760, South Korea
关键词
Least Squares Support Vector Machines; NOx Prediction; Teaching-Learning-Based-Optimization; Ameliorated Teaching-Learning-Based-Optimization; Teaching-Learning-Self-Study-Optimization; SUPPORT VECTOR MACHINE; MODEL; PLANT; POWER; IDENTIFICATION; PSO;
D O I
10.1252/jcej.16we002
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents a novel Teaching-Learning-Self-Study-Optimization (TLSO) algorithm which is not only fast converging according to the number of iterations, but also relatively consistent in converging with high accuracy to the global minimum in comparison with some other algorithms. The original Teaching-Learning-Based Optimization (TLBO) gives uniformly distributed and randomly selected weight to the amount of knowledge to a learner at each phase, i. e., teacher phase and learner phase. This uniformly distributed and randomly selected weight causes the algorithm to converge the average cost of learners in a moderate number of iterations. Li and his coworkers intensified the teacher and learner phases by introducing weight-parameters in order to improve the convergence speed in terms of iterations in 2013 and called it Ameliorated Teaching-Learning-Based Optimization (ATLBO). The criterion of a good evolutionary optimization algorithm is to be consistent in converging the cost of the objective function. For this, it should include intensification for local search as well as diversification for global search in order to reduce the chances of trapping in a local minimum. Some students naturally tend to study by themselves by the means of a library and internet academic resources in order to enhance their knowledge. This phenomenon is termed as self-study and is introduced in the proposed TLSO's learner phase as a diversification factor (DF). Various other evolutionary algorithms such as ACO, PSO, TLBO, ATLBO and two variants of TLSO are also developed and compared with TLSO in terms of consistency to converge to the global minimum. Results reveal that the TLSO was found to be consistent not only for a higher number of functions among 20 benchmark functions, but also for NOx prediction application. Results also show that the predicted NOx emissions through LSSVM tuned with TLSO are comparable with the other algorithms considered in this work.
引用
收藏
页码:273 / 290
页数:18
相关论文
共 28 条
[1]  
Adali T, 1999, INTEGR COMPUT-AID E, V6, P27
[2]   Prediction of NOx Emission from Coal Fired Power Plant Based on Real-Time Model Updates and Output Bias Update [J].
Ahmed, Faisal ;
Cho, Hyun Jun ;
Kim, Jin-Kuk ;
Seong, Nohuk ;
Yeo, Yeong-Koo .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2015, 48 (01) :35-43
[3]   A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant [J].
Ahmed, Faisal ;
Nazir, Salman ;
Yeo, Yeong Koo .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 26 (01) :14-20
[4]  
[Anonymous], 2014, INNOVATIVE COMPUTATI
[5]   The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission [J].
Baek, Se Hyun ;
Park, Ho Young ;
Ko, Sung Ho .
FUEL, 2014, 128 :62-70
[6]   Integration of LSSVM technique with PSO to determine asphaltene deposition [J].
Chamkalani, Ali ;
Zendehboudi, Sohrab ;
Bahadori, Alireza ;
Kharrat, Riaz ;
Chamkalani, Reza ;
James, Lesley ;
Chatzis, Ioannis .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 124 :243-253
[7]   Sizing truss structures using teaching-learning-based optimization [J].
Degertekin, S. O. ;
Hayalioglu, M. S. .
COMPUTERS & STRUCTURES, 2013, 119 :177-188
[8]   Computational modeling of pulverized coal combustion processes in tangentially fired furnaces [J].
Fan, JR ;
Qian, LG ;
Ma, YL ;
Sun, P ;
Cen, KF .
CHEMICAL ENGINEERING JOURNAL, 2001, 81 (1-3) :261-269
[9]   Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition [J].
Frias-Martinez, E. ;
Sanchez, A. ;
Velez, J. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2006, 19 (06) :693-704
[10]  
Hu DK, 2009, LECT NOTES ARTIF INT, V5855, P231