Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians

被引:80
作者
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-80910 Istanbul, Turkey
关键词
D O I
10.1063/1.1514834
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give two characterization theorems for pseudo-Hermitian (possibly nondiagonalizable) Hamiltonians with a discrete spectrum that admit a block-diagonalization with finite-dimensional diagonal blocks. In particular, we prove that for such an operator H the following statements are equivalent: (1) H is pseudo-Hermitian; (2) the spectrum of H consists of real and/or complex-conjugate pairs of eigenvalues and the geometric multiplicity and the dimension of the diagonal blocks for the complex-conjugate eigenvalues are identical; (3) H is Hermitian with respect to a positive-semidefinite inner product. We further discuss the relevance of our findings for the merging of a complex-conjugate pair of eigenvalues of diagonalizable pseudo-Hermitian Hamiltonians in general, and the PT-symmetric Hamiltonians and the effective Hamiltonian for a certain closed FRW minisuperspace quantum cosmological model in particular. (C) 2002 American Institute of Physics.
引用
收藏
页码:6343 / 6352
页数:10
相关论文
共 22 条
[1]   Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians [J].
Ahmed, Z .
PHYSICS LETTERS A, 2002, 294 (5-6) :287-291
[2]   Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 290 (1-2) :19-22
[3]  
BAGCHI B, AR14QUANTPH0205002
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[6]  
BENDER CM, AR14HEPTH0201108
[7]   Schrodinger operators with complex potential but real spectrum [J].
Cannata, F ;
Junker, G ;
Trost, J .
PHYSICS LETTERS A, 1998, 246 (3-4) :219-226
[8]   Strong-coupling expansions for the PT-symmetric oscillators V(x)=a(ix)+b(ix)2+c(ix)3 [J].
Fernández, FM ;
Guardiola, R ;
Ros, J ;
Znojil, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (50) :10105-10112
[9]  
KATO T, 1995, PERTURBATION THEORY
[10]   Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra [J].
Klishevich, SM ;
Plyushchay, MS .
NUCLEAR PHYSICS B, 2002, 628 (1-2) :217-233