Combinatorial description of the roots of the Bernstein-Sato polynomials for monomial ideals

被引:8
作者
Budur, Nero
Mustata, Mircea
Saito, Morihiko
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD USA
[3] RIMS Kyoto Univ, Kyoto, Japan
基金
美国国家科学基金会;
关键词
Bernstein-Sato polynomial; monomial ideal;
D O I
10.1080/00927870600876201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a combinatorial description of the roots of the Bernstein-Sato polynomial of a monomial ideal using the Newton polyhedron and some semigroups associated to the ideal.
引用
收藏
页码:4103 / 4117
页数:15
相关论文
共 15 条
[1]   Constructive proof of the existence of Bernstein-Sato polynomials for several analytic functions [J].
Bahloul, R .
COMPOSITIO MATHEMATICA, 2005, 141 (01) :175-191
[2]  
Budur N, 2006, MATH RES LETT, V13, P125
[3]   Bernstein-Sato polynomials of arbitrary varieties [J].
Budur, Nero ;
Mustata, Mircea ;
Saito, Morihiko .
COMPOSITIO MATHEMATICA, 2006, 142 (03) :779-797
[4]   Jumping coefficients of multiplier ideals [J].
Ein, L ;
Lazarsfeld, R ;
Smith, KE ;
Varolin, D .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (03) :469-506
[5]   BERNSTEIN-SATO POLYNOMIAL FOR SEVERAL ANALYTIC-FUNCTIONS [J].
GYOJA, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (02) :399-411
[6]  
HOWALD J, IN PRESS T AM MATH S
[7]   Multiplier ideals of monomial ideals [J].
Howald, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2665-2671
[8]   B-FUNCTIONS AND HOLONOMIC SYSTEMS - RATIONALITY OF ROOTS OF B-FUNCTIONS [J].
KASHIWARA, M .
INVENTIONES MATHEMATICAE, 1976, 38 (01) :33-53
[9]  
LAZARSFELD R, 2004, SERIES MODERN SURVEY, V49
[10]  
Malgrange B., 1975, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, V459, P98