Quantum MDS codes with large minimum distance

被引:52
作者
Zhang, Tao [1 ,2 ]
Ge, Gennian [1 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum MDS code; Generalized Reed-Solomon code; Hermitian construction; CONSTACYCLIC CODES; STABILIZER CODES; ERROR-CORRECTION;
D O I
10.1007/s10623-016-0245-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum MDS codes are an important family of quantum codes. In this paper, using generalized Reed-Solomon codes and Hermitian construction, we construct seven classes of quantum MDS codes. All of them provide large minimum distance and most of them are new in the sense that the parameters of quantum codes are different from all the previously known ones.
引用
收藏
页码:503 / 517
页数:15
相关论文
共 25 条
[1]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[2]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[3]  
Bierbrauer J, 2000, J COMB DES, V8, P174, DOI 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO
[4]  
2-T
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[7]   Application of Constacyclic Codes to Quantum MDS Codes [J].
Chen, Bocong ;
Ling, San ;
Zhang, Guanghui .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) :1474-1484
[8]   Quantum codes from concatenated algebraic-geometric codes [J].
Chen, H ;
Ling, S ;
Xing, CP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) :2915-2920
[9]   Quantum codes [[6,2,3]]p and [[7,3,3]]p (p ≥ 3) exist [J].
Feng, KQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2384-2391
[10]  
Grassi M, 2015, IEEE INT SYMP INFO, P1104, DOI 10.1109/ISIT.2015.7282626