Electrochemical Performance Enhancement of Nitrogen-Doped TiO2 for Lithium-Ion Batteries Investigated by a Film Electrode Model

被引:25
作者
He, Qiang [1 ,2 ]
Sun, Zhonggui [1 ]
Shi, Xingwang [1 ]
Wu, Weiwei [1 ]
Cheng, Jipeng [3 ,4 ]
Zhuo, Renfu [1 ]
Zhang, Zhiya [1 ,2 ]
Wang, Jun [1 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Special Funct Mat & Struct Design, Minist Educ, Lanzhou 730000, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[4] Zhengzhou Univ, Sch Phys & Microelect, Zhengzhou 450052, Peoples R China
关键词
TITANIUM-DIOXIDE; ENERGY-STORAGE; PARTICLE-SIZE; ANATASE; ANODE; OXIDE; NANOPARTICLES; MORPHOLOGY; GRAPHENE;
D O I
10.1021/acs.energyfuels.0c03580
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Titanium dioxide (TiO2) is proposed as a promising anode material for lithium-ion batteries (LIBs) due to its highly stable structure and slight side reaction at the electrode/electrolyte interface. The low specific capacity and slow Li-ion diffusion kinetics are the major bottlenecks for the actual application of TiO2. It is thus important to exploit viable pathways to enhance the electrochemical performance and understand the corresponding mechanisms. In this work, high-quality amorphous TiO2 (TO) and anatase TiO2 (cTO) film electrodes are employed to investigate the bulk electrochemical performance by minimizing the surface contribution. At the same time, nitrogen (N) doping is performed for further comparison. The results show that TO has a relatively lower specific capacity than cTO. However, N-doped TO (TON) presents a specific capacity more than 4 times higher than TO and 3 times higher than cTO. TON also exhibits a significantly improved initial Coulombic efficiency (ICE) and a relatively higher Li-ion diffusion coefficient. Our study shows that the superior electrochemical performance of TON is correlated to the synergistic effects of the bulk pseudocapacitor and battery characteristics.
引用
收藏
页码:2717 / 2726
页数:10
相关论文
共 62 条
[1]   Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects [J].
Asahi, Ryoji ;
Morikawa, Takeshi ;
Irie, Hiroshi ;
Ohwaki, Takeshi .
CHEMICAL REVIEWS, 2014, 114 (19) :9824-9852
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[4]   Solid Electrolyte Interphases on Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Bo ;
Liu, Peng ;
Wu, Hao ;
Zhou, Yu ;
Wang, Dianlong ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor [J].
Chen, WenQiang ;
Wang, Jiao ;
Ma, K. Y. ;
Li, M. ;
Guo, S. H. ;
Liu, F. ;
Cheng, J. P. .
APPLIED SURFACE SCIENCE, 2018, 451 :280-288
[7]   Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies [J].
Chen, Yilin ;
Cao, Xiaoxin ;
Lin, Bizhou ;
Gao, Bifen .
APPLIED SURFACE SCIENCE, 2013, 264 :845-852
[8]   Recent research of core?shell structured composites with NiCo 2 O 4 as scaffolds for electrochemical capacitors [J].
Cheng, J. P. ;
Wang, W. D. ;
Wang, X. C. ;
Liu, F. .
CHEMICAL ENGINEERING JOURNAL, 2020, 393
[9]   Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage [J].
Deng, Xiaolan ;
Wei, Zengxi ;
Cui, Chunyu ;
Liu, Quanhui ;
Wang, Caiyun ;
Ma, Jianmin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (09) :4013-4022
[10]   Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays [J].
Fang, Hai-Tao ;
Liu, Min ;
Wang, Da-Wei ;
Sun, Tao ;
Guan, Dong-Sheng ;
Li, Feng ;
Zhou, Jigang ;
Sham, Tsun-Kong ;
Cheng, Hui-Ming .
NANOTECHNOLOGY, 2009, 20 (22)