MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks

被引:6
作者
Wani, Nisar [1 ]
Raza, Khalid [2 ]
机构
[1] Govt Degree Coll Baramulla, Baramulla, Jammu & Kashmir, India
[2] Jamia Millia Islamia, Dept Comp Sci, New Delhi, India
关键词
Gene regulatory networks; GRN inference; large-scale GRN; Systems biology; Network biology; GENOMIC DATA; FRAMEWORK; DATABASE;
D O I
10.7717/peerj-cs.363
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High throughput multi-omics data generation coupled with heterogeneous genomic data fusion are defining new ways to build computational inference models. These models are scalable and can support very large genome sizes with the added advantage of exploiting additional biological knowledge from the integration framework. However, the limitation with such an arrangement is the huge computational cost involved when learning from very large datasets in a sequential execution environment. To overcome this issue, we present a multiple kernel learning (MKL) based gene regulatory network (GRN) inference approach wherein multiple heterogeneous datasets are fused using MKL paradigm. We formulate the GRN learning problem as a supervised classification problem, whereby genes regulated by a specific transcription factor are separated from other non-regulated genes. A parallel execution architecture is devised to learn a large scale GRN by decomposing the initial classification problem into a number of subproblems that run as multiple processes on a multi-processor machine. We evaluate the approach in terms of increased speedup and inference potential using genomic data from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The results thus obtained demonstrate that the proposed method exhibits better classification accuracy and enhanced speedup compared to other state-of-the-art methods while learning large scale GRNs from multiple and heterogeneous datasets.
引用
收藏
页数:20
相关论文
共 37 条
[1]   Network inference, analysis, and modeling in systems biology [J].
Albert, Reke .
PLANT CELL, 2007, 19 (11) :3327-3338
[2]   SVRG-MKL: A Fast and Scalable Multiple Kernel Learning Solution for Features Combination in Multi-Class Classification Problems [J].
Alioscha-Perez, Mitchel ;
Oveneke, Meshia Cedric ;
Sahli, Hichem .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (05) :1710-1723
[3]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[4]  
Butte A J, 2000, Pac Symp Biocomput, P418
[5]   Parallel multiple kernel learning: a hybrid alternating direction method of multipliers [J].
Chen, Zhen-Yu ;
Fan, Zhi-Ping .
KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 40 (03) :673-696
[6]   Learning with multiple pairwise kernels for drug bioactivity prediction [J].
Cichonska, Anna ;
Pahikkala, Tapio ;
Szedmak, Sandor ;
Julkunen, Heli ;
Airola, Antti ;
Heinonen, Markus ;
Aittokallio, Tero ;
Rousu, Juho .
BIOINFORMATICS, 2018, 34 (13) :509-518
[7]   Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles [J].
Faith, Jeremiah J. ;
Hayete, Boris ;
Thaden, Joshua T. ;
Mogno, Ilaria ;
Wierzbowski, Jamey ;
Cottarel, Guillaume ;
Kasif, Simon ;
Collins, James J. ;
Gardner, Timothy S. .
PLOS BIOLOGY, 2007, 5 (01) :54-66
[8]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[9]   TRRUST: a reference database of human transcriptional regulatory interactions [J].
Han, Heonjong ;
Shim, Hongseok ;
Shin, Donghyun ;
Shim, Jung Eun ;
Ko, Yunhee ;
Shin, Junha ;
Kim, Hanhae ;
Cho, Ara ;
Lee, Eiru Kim Tak ;
Kim, Hyojin ;
Kim, Kyungsoo ;
Yang, Sunmo ;
Bae, Dasom ;
Yun, Ayoung ;
Kim, Sunphil ;
Kim, Chan Yeong ;
Cho, Hyeon Jin ;
Kang, Byunghee ;
Shin, Susie ;
Lee, Insuk .
SCIENTIFIC REPORTS, 2015, 5
[10]   Gene regulatory network inference: Data integration in dynamic models-A review [J].
Hecker, Michael ;
Lambeck, Sandro ;
Toepfer, Susanne ;
van Someren, Eugene ;
Guthke, Reinhard .
BIOSYSTEMS, 2009, 96 (01) :86-103