Rational Analysis of Layered Oxide Power Performance Limitations in a Lithium Battery Application

被引:3
作者
Cabelguen, Pierre-Etienne [1 ,2 ]
Peralta, David [1 ,2 ]
Cugnet, Mikael [1 ,2 ]
Badot, Jean-Claude [3 ]
Dubrunfaut, Olivier [4 ]
Mailley, Pascal [1 ]
机构
[1] Univ Grenoble Alpes, Dept Elect & Hydrogene Transports, F-38402 St Martin Dheres, France
[2] CEA, LITEN, Dept Elect & Hydrogene Transports, F-38054 Grenoble, France
[3] UPMC Univ Paris 06, Chim ParisTech, CNRS UMR 7574, Lab Chim Mat Condensee Paris, 11 Rue P&M Curie, F-75231 Paris 05, France
[4] Univ Paris Saclay, Univ Paris Sud, Sorbonne Univ,GeePs Grp Elect Engn Paris, UPMC Univ Paris 06,UMR CNRS 8507,CentraleSupelec, 3 & 11 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
batteries; broadband dielectric spectroscopy; electrochemistry; microstructures; LINI1/3CO1/3MN1/3O2 CATHODE MATERIAL; ELECTRONIC TRANSPORT; INTERCALATION; INSERTION; LI(NI1/3CO1/3MN1/3)O-2; KINETICS;
D O I
10.1002/adsu.201700078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of this paper is to rationalize material geometry contribution on the electrochemical performances of four model LiNi1/3Mn1/3Co1/3O2 materials. A methodology combining the exhaustive microstructural characterization and the careful study of each component of the electrochemical process is established to discuss the limiting factors of power performances. Intuitions based on the exhaustive microstructural characterization are first confronted with the study, by cyclic voltammetry, of the rate-limiting step of the electrochemical process. Depending on the microstructure, diffusion controlled electrochemical behavior is observed, which is expected in Li-ion battery, and also charge-transfer limitation even at extremely high scan rates. This second behavior surprisingly occurs for high surface area materials. Possible electronic limitations in these materials are explored using broadband dielectric spectroscopy. This unique technique shows that flake-shaped, highly anisotropic, crystallites facilitate electronic motion at all scale levels compared to cuboidal crystallites. Charge-transfer limitations are not electronic, but come from the material interface contribution to the electrochemical process. Numerical simulations allow quantifying the actual electroactive surface area. Between 15% and 30% of the BET surface area, corresponding to the thickness of the crystallites, are actually active.
引用
收藏
页数:12
相关论文
共 35 条
[1]   A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries [J].
Badot, Jean-Claude ;
Ligneel, Eric ;
Dubrunfaut, Olivier ;
Guyomard, Dominigue ;
Lestriez, Bernard .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (17) :2749-2758
[2]   An electrochemical investigation into the lithium insertion properties of LixCoO2 [J].
Barker, J ;
Pynenburg, R ;
Koksbang, R ;
Saidi, MY .
ELECTROCHIMICA ACTA, 1996, 41 (15) :2481-2488
[3]   BROAD-BAND ANALYSIS OF A COAXIAL DISCONTINUITY USED FOR DIELECTRIC MEASUREMENTS [J].
BELHADJTAHAR, NE ;
FOURRIERLAMER, A .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1986, 34 (03) :346-350
[4]   Influence of Lithium Insertion on the Electronic Transport in Electroactive MoO3 Nanobelts and Classical Powders: Morphological and Particle Size Effects [J].
Berthumeyrie, S. ;
Badot, J. -C. ;
Pereira-Ramos, J-P. ;
Dubrunfaut, O. ;
Bach, S. ;
Vermaut, Ph. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (46) :19803-19814
[5]  
Brad A.J., 2000, Electrochemical Methods: Fundamentals and Applications, V2nd
[6]   Impact of morphological changes of LiNi1/3Mn1/3Co1/3O2 on lithium-ion cathode performances [J].
Cabelguen, Pierre-Etienne ;
Peralta, David ;
Cugnet, Mikael ;
Maillet, Pascal .
JOURNAL OF POWER SOURCES, 2017, 349 :163-163
[7]   Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0<=x<=1) cathode materials [J].
Caurant, D ;
Baffier, N ;
Garcia, B ;
PereiraRamos, JP .
SOLID STATE IONICS, 1996, 91 (1-2) :45-54
[8]   The synthesis of Li(Ni1/3Co1/3Mn1/3)O2 using eutectic mixed lithium salt LiNO3-LiOH [J].
Chang, Zhaorong ;
Chen, Zhongjun ;
Wu, Feng ;
Yuan, Xiao-Zi ;
Wang, Haijiang .
ELECTROCHIMICA ACTA, 2009, 54 (26) :6529-6535
[9]   Hierarchical Li1.2Ni0.2Mn0.6O2 Nanoplates with Exposed {010} Planes as High-Performance Cathode Material for Lithium-Ion Batteries [J].
Chen, Lai ;
Su, Yuefeng ;
Chen, Shi ;
Li, Ning ;
Bao, Liying ;
Li, Weikang ;
Wang, Zhao ;
Wang, Meng ;
Wu, Feng .
ADVANCED MATERIALS, 2014, 26 (39) :6756-6760
[10]   Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J].
Cho, TH ;
Park, SM ;
Yoshio, M ;
Hirai, T ;
Hideshima, Y .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :306-312