A mixed DG method for folded Naghdi's shell in Cartesian coordinates

被引:0
作者
Nicaise, Serge [1 ]
Merabet, Ismail [2 ]
机构
[1] Univ Valenciennes, LAMV, Valenciennes, France
[2] Univ Kasdi Merbah, LAMA, Ouargla, Algeria
关键词
MODEL; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.crma.2015.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, a mixed formulation is proposed to solve Naghdi's equations for a thin linearly elastic shell. The unknowns of the problem are the displacement of the points of the middle surface, the rotation field of the normal vector to the middle surface of the shell and a Lagrange multiplier that is introduced in order to enforce the tangency requirement on the rotation. We prove the well posedness of the continuous and the discrete problems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:653 / 658
页数:6
相关论文
共 8 条
[1]  
[Anonymous], 1986, SPRINGER SERIES COMP
[2]   A posteriori analysis of a finite element discretization of a Naghdi shell model [J].
Bernardi, Christine ;
Hecht, Frederic ;
Le Dret, Herve ;
Blouza, Adel .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :190-211
[3]   Nagdhi's shell model: Existence, uniqueness and continuous dependence on the midsurface [J].
Blouza, A ;
Le Dret, H .
JOURNAL OF ELASTICITY, 2001, 64 (2-3) :199-216
[4]   Existence and uniqueness for Nagdhi's model for shells with little regularity [J].
Blouza, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (07) :839-844
[5]   Two finite element approximations of Naghdi's shell model in Cartesian coordinates [J].
Blouza, Adel ;
Hecht, Frederic ;
Le Dret, Herve .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :636-654
[6]  
Ciarlet P.G., 2005, MATH ELASTICITY, VIII
[7]  
Naghdi P., 1963, Progress in Solid Mechanics, VIV, P1
[8]  
Nicaise S., 2015, C R ACAD SCI PARIS 1, V353