NiSnO3 nanoparticles/reduced graphene oxide composite with enhanced performance as a lithium-ion battery anode material

被引:19
作者
Chen, Junjie [1 ,2 ]
Zou, Mingzhong [1 ,2 ]
Li, Jiaxin [3 ]
Wen, Weiwei [1 ,2 ]
Jiang, Liqin [1 ,2 ]
Chen, Luzhuo [1 ,2 ]
Feng, Qian [1 ,2 ]
Huang, Zhigao [1 ,2 ]
机构
[1] Fujian Normal Univ, Fujian Prov Key Lab Quantum Manipulat & New Energ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
[2] Fujian Prov Collaborat Innovat Ctr Optoelect Semi, Xiamen 361005, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 88期
关键词
FACILE SYNTHESIS; STORAGE; CAPACITY; ELECTRODES; NANOSHEETS; SHEETS; SN;
D O I
10.1039/c6ra13186g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
NiSnO3 nanoparticles (NPs) were loaded on reduced graphene oxide (RGO) by a facile hydrothermal technique as a anode material for lithium ion batteries (LIBs). It was found that the NiSnO3/RGO anode exhibits improved LIBs performance compared to bare NiSnO3 or RGO. The NiSnO3/RGO anode can maintain a reversible capacity of 792 mA h g(-1), tested at 1200 mA g(-1) after 60 cycles. When the current density was lowered in a test of rate capacity, the charge capacity was completely restored after high rate cycling at 6000 mA g(-1) and maintained 889 mA h g(-1) at 200 mA g(-1) after 115 cycles. The enhanced LIBs performance of the NiSnO3/RGO nanocomposites can be attributed to the synergistic effects between a highly loaded NiSnO3 NPs and graphene network.
引用
收藏
页码:85374 / 85380
页数:7
相关论文
共 31 条
[1]   Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries [J].
Byon, Hye Ryung ;
Gallant, Betar M. ;
Lee, Seung Woo ;
Shao-Horn, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :1037-1045
[2]   Facile synthesis of CoSnO3/Graphene nanohybrid with superior lithium storage capability [J].
Cao, Yiqi ;
Zhang, Lei ;
Tao, Duolei ;
Huo, Dexuan ;
Su, Kunpeng .
ELECTROCHIMICA ACTA, 2014, 132 :483-489
[3]   Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries [J].
Chen, Chang ;
Ru, Qiang ;
Hu, Shejun ;
An, Bonan ;
Song, Xiong ;
Hou, Xianhua .
ELECTROCHIMICA ACTA, 2015, 151 :203-213
[4]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[5]   The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review [J].
Deng, Yuanfu ;
Fang, Chengcheng ;
Chen, Guohua .
JOURNAL OF POWER SOURCES, 2016, 304 :81-101
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application [J].
Fu, Lijun ;
Song, Kepeng ;
Li, Xifei ;
van Aken, Peter A. ;
Wang, Chunlei ;
Maier, Joachim ;
Yu, Yan .
RSC ADVANCES, 2014, 4 (68) :36301-36306
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[10]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397