Transmon platform for quantum computing challenged by chaotic fluctuations

被引:41
作者
Berke, Christoph [1 ]
Varvelis, Evangelos [2 ,3 ]
Trebst, Simon [1 ]
Altland, Alexander [1 ]
DiVincenzo, David P. [2 ,3 ,4 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Rhein Westfal TH Aachen, Inst Quantum Informat, D-52056 Aachen, Germany
[3] Julich Aachen Res Alliance JARA, Fundamentals Future Informat Technol, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, D-52425 Julich, Germany
关键词
D O I
10.1038/s41467-022-29940-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A certain amount of intentional frequency detuning ('disorder') is crucially required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized phase for system parameters relevant to current quantum processors developed by the IBM, Delft, and Google consortia, considering the cases of natural or engineered disorder. Applying three independent diagnostics of localization theory - a Kullback-Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum - we find that some of these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations. Superconducting quantum processors need to balance intentional disorder (to protect qubits) and nonlinear resonator coupling (to manipulate qubits), while avoiding chaotic instabilities. Berke et al. use the techniques of many-body localization theory to study the stability of current platforms against quantum chaos.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Repeated quantum error detection in a surface code
    Andersen, Christian Kraglund
    Remm, Ants
    Lazar, Stefania
    Krinner, Sebastian
    Lacroix, Nathan
    Norris, Graham J.
    Gabureac, Mihai
    Eichler, Christopher
    Wallraff, Andreas
    [J]. NATURE PHYSICS, 2020, 16 (08) : 875 - +
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Circuit quantum electrodynamics
    Blais, Alexandre
    Grimsmo, Arne L.
    Girvin, S. M.
    Wallraffe, Andreas
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [4] Brner S.-D., 2020, THESIS U COLOGNE
  • [5] Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits
    Chamberland, Christopher
    Zhu, Guanyu
    Yoder, Theodore J.
    Hertzberg, Jared B.
    Cross, Andrew W.
    [J]. PHYSICAL REVIEW X, 2020, 10 (01)
  • [6] Challenges and Opportunities of Near-Term Quantum Computing Systems
    Corcoles, Antonio D.
    Kandala, Abhinav
    Javadi-Abhari, Ali
    McClure, Douglas T.
    Cross, Andrew W.
    Temme, Kristan
    Nation, Paul D.
    Steffen, Matthias
    Gambetta, Jay M.
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (08) : 1338 - 1352
  • [7] Anderson transitions
    Evers, Ferdinand
    Mirlin, Alexander D.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (04) : 1355 - 1417
  • [8] Farkov Y. A., 2019, IND APPL MATH, V1
  • [9] Gambetta J. M., 2013, QUANTAM INFORM PROCE
  • [10] Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors
    Hertzberg, Jared B.
    Zhang, Eric J.
    Rosenblatt, Sami
    Magesan, Easwar
    Smolin, John A.
    Yau, Jeng-Bang
    Adiga, Vivekananda P.
    Sandberg, Martin
    Brink, Markus
    Chow, Jerry M.
    Orcutt, Jason S.
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)