Transmon platform for quantum computing challenged by chaotic fluctuations

被引:51
作者
Berke, Christoph [1 ]
Varvelis, Evangelos [2 ,3 ]
Trebst, Simon [1 ]
Altland, Alexander [1 ]
DiVincenzo, David P. [2 ,3 ,4 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Rhein Westfal TH Aachen, Inst Quantum Informat, D-52056 Aachen, Germany
[3] Julich Aachen Res Alliance JARA, Fundamentals Future Informat Technol, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Peter Grunberg Inst, Theoret Nanoelect, D-52425 Julich, Germany
关键词
D O I
10.1038/s41467-022-29940-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A certain amount of intentional frequency detuning ('disorder') is crucially required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized phase for system parameters relevant to current quantum processors developed by the IBM, Delft, and Google consortia, considering the cases of natural or engineered disorder. Applying three independent diagnostics of localization theory - a Kullback-Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum - we find that some of these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations. Superconducting quantum processors need to balance intentional disorder (to protect qubits) and nonlinear resonator coupling (to manipulate qubits), while avoiding chaotic instabilities. Berke et al. use the techniques of many-body localization theory to study the stability of current platforms against quantum chaos.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[4]  
Brner S.-D., 2020, THESIS U COLOGNE
[5]   Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits [J].
Chamberland, Christopher ;
Zhu, Guanyu ;
Yoder, Theodore J. ;
Hertzberg, Jared B. ;
Cross, Andrew W. .
PHYSICAL REVIEW X, 2020, 10 (01)
[6]   Challenges and Opportunities of Near-Term Quantum Computing Systems [J].
Corcoles, Antonio D. ;
Kandala, Abhinav ;
Javadi-Abhari, Ali ;
McClure, Douglas T. ;
Cross, Andrew W. ;
Temme, Kristan ;
Nation, Paul D. ;
Steffen, Matthias ;
Gambetta, Jay M. .
PROCEEDINGS OF THE IEEE, 2020, 108 (08) :1338-1352
[7]   Anderson transitions [J].
Evers, Ferdinand ;
Mirlin, Alexander D. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1355-1417
[8]  
Farkov Y. A., 2019, IND APPL MATH, V1
[9]  
Gambetta J. M, 2013, P 44 IFF SPRING SCH
[10]   Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors [J].
Hertzberg, Jared B. ;
Zhang, Eric J. ;
Rosenblatt, Sami ;
Magesan, Easwar ;
Smolin, John A. ;
Yau, Jeng-Bang ;
Adiga, Vivekananda P. ;
Sandberg, Martin ;
Brink, Markus ;
Chow, Jerry M. ;
Orcutt, Jason S. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)