3D printing of asphalt and its effect on mechanical properties

被引:32
|
作者
Jackson, Richard J. [1 ,2 ]
Wojcik, Adam [1 ]
Miodownik, Mark [1 ,2 ]
机构
[1] UCL, Mech Engn Dept, London, England
[2] UCL, Inst Making, London, England
基金
英国工程与自然科学研究理事会;
关键词
Asphalt; Bitumen; 3D printing; Additive manufacture; Repair; Toughness; CONSTRUCTION; CONCRETE; BITUMEN; ENERGY; DAMAGE;
D O I
10.1016/j.matdes.2018.09.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper describes work to design, build and test an asphalt 3D printer. The main difficulty encountered is that asphalt behaves as a non-Newtonian liquid when moving through the extruder. Thus, the rheology and pressure in relation to set temperature and other operational parameters showed highly non-linear behaviour and made control of the extrusion process difficult. This difficulty was overcome through an innovative extruder design enabling 3D printing of asphalt at a variety of temperatures and process conditions. We demonstrate the ability to extrude asphalt into complex geometries, and to repair cracks. The mechanical properties of 3D printed asphalt are compared with cast asphalt over a range of process conditions. The 3D printed asphalt has different properties from cast, being significantly more ductile under a defined range of process conditions. In particular, the enhanced mechanical properties are a function of process temperature and we believe this is due to microstructural changes in the asphalt resulting in crack-bridging fibres that increase toughness. The advantages and opportunities of using 3D printed asphalt to repair cracks and potholes in roads are discussed. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:468 / 474
页数:7
相关论文
共 50 条
  • [1] 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties
    Ozbolat, Veli
    Dey, Madhuri
    Ayan, Bugra
    Povidianskas, Adomas
    Demirel, Melik C.
    Ozbolat, Ibrahim T.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 682 - 693
  • [2] Building 3D Printing: The Anisotropy Mechanical Properties and Printing Time
    Xin, Penghao
    Wang, Ziming
    Xi, Wenbo
    Peng, Jingying
    He, Huan
    Tang, Ruifeng
    ADVANCES IN ENERGY AND ENVIRONMENTAL MATERIALS, 2018, : 535 - 543
  • [3] 3D printing confectionaries with tunable mechanical properties
    Chadwick, Ethan
    Barrett, Ann H.
    Hobson-Rhoades, William
    Okamoto, Michael
    Suleiman, Yara
    Oleksyk, Lauren E.
    Xu, Hongyi
    Shahbazmohamadi, Sina
    Shetty, Abhishek
    Baker, Richard
    Ma, Anson W. K.
    JOURNAL OF FOOD ENGINEERING, 2024, 361
  • [4] Mechanical properties of workpieces based on 3D printing
    Zhao, Mingxia
    2024 3RD INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND APPLIED MECHANICS, ICMEAAE 2024, 2024, 2808
  • [5] The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold
    Soufivand, Anahita Ahmadi
    Abolfathi, Nabiollah
    Hashemi, Ata
    Lee, Sang Jin
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1038 - 1046
  • [6] Effect of 3D printing path on mechanical properties of arch concrete bridge
    Sun X.-Y.
    Tang G.
    Wang H.-L.
    Wang Q.
    Zhang Z.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2020, 54 (11): : 2085 - 2091
  • [7] Effect of Printing Parameters of 3D Printed PLA Parts on Mechanical Properties
    Jayakumar, N.
    Senthilkumar, G.
    Pradeep, A. D.
    JOURNAL OF ENGINEERING RESEARCH, 2021, 9
  • [8] Investigation of mechanical and printing properties of poly(lactic acid) and its composite filaments used in 3D printing
    Gökçen Şahin
    Hasan Özyıldırım
    Anıl Şahin
    Iranian Polymer Journal, 2024, 33 : 79 - 91
  • [9] Investigation of mechanical and printing properties of poly(lactic acid) and its composite filaments used in 3D printing
    Sahin, Goekcen
    Ozyildirim, Hasan
    Sahin, Anil
    IRANIAN POLYMER JOURNAL, 2024, 33 (01) : 79 - 91
  • [10] Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites
    Zhang, Hao
    Zhu, Liming
    Zhang, Fan
    Yang, Mijia
    MATERIALS, 2021, 14 (09)