WESPE: Weakly Supervised Photo Enhancer for Digital Cameras

被引:92
作者
Ignatov, Andrey [1 ]
Kobyshev, Nikolay [1 ]
Timofte, Radu [1 ]
Vanhoey, Kenneth [1 ]
Van Gool, Luc [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[2] Katholieke Univ Leuven, ESAT PSI, Leuven, Belgium
来源
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2018年
关键词
D O I
10.1109/CVPRW.2018.00112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-end and compact mobile cameras demonstrate limited photo quality mainly due to space, hardware and budget constraints. In this work, we propose a deep learning solution that translates photos taken by cameras with limited capabilities into DSLR-quality photos automatically. We tackle this problem by introducing a weakly supervised photo enhancer (WESPE) - a novel image-to-image Generative Adversarial Network-based architecture. The proposed model is trained by under weak supervision: unlike previous works, there is no need for strong supervision in the form of a large annotated dataset of aligned original/enhanced photo pairs. The sole requirement is two distinct datasets: one from the source camera, and one composed of arbitrary high-quality images that can be generally crawled from the Internet - the visual content they exhibit may be unrelated. In this work, we emphasize on extensive evaluation of obtained results. Besides standard objective metrics and subjective user study, we train a virtual rater in the form of a separate CNN that mimics human raters on Flickr data and use this network to get reference scores for both original and enhanced photos. Our experiments on the DPED, KITTI and Cityscapes datasets as well as pictures from several generations of smartphones demonstrate that WESPE produces comparable or improved qualitative results with state-of-the-art strongly supervised methods.
引用
收藏
页码:804 / 813
页数:10
相关论文
共 36 条
[1]  
AGUSTSSON E, 2017, IEEE C COMP VIS PATT, DOI DOI 10.1109/CVPRW.2017.150
[2]   Image up-sampling using total-variation regularization with a new observation model [J].
Aly, HA ;
Dubois, E .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (10) :1647-1659
[3]  
[Anonymous], 2007, Proceedings of the 18th Eurographics conference on Rendering Techniques
[4]  
[Anonymous], 2016, Journal of WSCG
[5]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[6]   Deep Colorization [J].
Cheng, Zezhou ;
Yang, Qingxiong ;
Sheng, Bin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :415-423
[7]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]  
Efros AA, 2001, COMP GRAPH, P341, DOI 10.1145/383259.383296
[10]  
Gatys L.A., 2015, A neural algorithm of artistic style, DOI [DOI 10.1167/16.12.326, 10.1167/16.12.326]