Characterization and Parametrization of Reynolds Stress and Turbulent Heat Flux in the Stably-Stratified Lower Arctic Troposphere Using Aircraft Measurements

被引:21
作者
Aliabadi, Amir A. [1 ]
Staebler, Ralf M. [2 ]
Liu, Michael [2 ]
Herber, Andreas [3 ]
机构
[1] MIT, Dept Architecture, Bldg Technol Program, Cambridge, MA 02139 USA
[2] Environm & Climate Change Canada, AQRD, Air Qual Res Proc Sect AQRP, STB, Toronto, ON, Canada
[3] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Arctic; Countergradient flux; Parametrization schemes; Planetary boundary layer; Subgrid-scale turbulence; BOUNDARY-LAYER; GREAT-PLAINS; SURFACE; PARAMETERIZATION; STABILITY; TRANSPORT; FORMULATION; PREDICTION; ATMOSPHERE; MODELS;
D O I
10.1007/s10546-016-0164-7
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Aircraft measurements are used to characterize properties of clear-air turbulence in the lower Arctic troposphere. For typical vertical resolutions in general circulation models, there is evidence for both downgradient and countergradient vertical turbulent transport of momentum and heat in the mostly statically stable conditions within both the boundary layer and the free troposphere. Countergradient transport is enhanced in the free troposphere compared to the boundary layer. Three parametrizations are suggested to formulate the turbulent heat flux and are evaluated using the observations. The parametrization that accounts for the anisotropic nature of turbulence and buoyancy flux predicts both observed downgradient and countergradient transport of heat more accurately than those that do not. The inverse turbulent Prandtl number is found to only weakly decrease with increasing gradient Richardson number in a statistically significant way, but with large scatter in the data. The suggested parametrizations can potentially improve the performance of regional and global atmospheric models.
引用
收藏
页码:99 / 126
页数:28
相关论文
共 53 条
[1]   Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions: Experimental and Numerical Aspects [J].
Aliabadi, A. A. ;
Staebler, R. M. ;
de Grandpre, J. ;
Zadra, A. ;
Vaillancourt, P. A. .
ATMOSPHERE-OCEAN, 2016, 54 (01) :60-74
[2]   Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution [J].
Aliabadi, A. A. ;
Staebler, R. M. ;
Sharma, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (05) :2651-2673
[3]  
Alian AhmedR., 2016, Advances in Nanocomposites, P1
[4]  
Bélair S, 1999, J APPL METEOROL, V38, P1499, DOI 10.1175/1520-0450(1999)038<1499:AEOLVN>2.0.CO
[5]  
2
[6]  
BOUGEAULT P, 1989, MON WEATHER REV, V117, P1872, DOI 10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO
[7]  
2
[8]   Characterizations of tropospheric turbulence and stability layers from aircraft observations [J].
Cho, JYN ;
Newell, RE ;
Anderson, BE ;
Barrick, JDW ;
Thornhill, KL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D20)
[9]   Single-column model intercomparison for a stably stratified atmospheric boundary layer [J].
Cuxart, J. ;
Holtslag, A. A. M. ;
Beare, R. J. ;
Bazile, E. ;
Beljaars, A. ;
Cheng, A. ;
Conangla, L. ;
Ek, M. ;
Freedman, F. ;
Hamdi, R. ;
Kerstein, A. ;
Kitagawa, H. ;
Lenderink, G. ;
Lewellen, D. ;
Mailhot, J. ;
Mauritsen, T. ;
Perov, V. ;
Schayes, G. ;
Steeneveld, G-J. ;
Svensson, G. ;
Taylor, P. ;
Weng, W. ;
Wunsch, S. ;
Xu, K-M. .
BOUNDARY-LAYER METEOROLOGY, 2006, 118 (02) :273-303
[10]   THEORETICAL EXPRESSION FOR COUNTERGRADIENT VERTICAL HEAT-FLUX [J].
DEARDORFF, JW .
JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (30) :5900-+