The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution

被引:0
作者
Tesemnivkov, P., I [1 ,2 ,3 ]
Foss, S. G. [2 ,3 ,4 ]
机构
[1] Math Ctr Akademgorodok, Ul Pirogova 1, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[4] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
基金
俄罗斯科学基金会;
关键词
subexponential and strong subexponential distributions; branching random walk; receding boundary; principle of a single big jump; RANDOM TIME-INTERVAL; SUMS; ASYMPTOTICS; MAXIMUM;
D O I
10.1134/S0081543822010229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Foss and Zachary (2003) and Foss, Palmowski and Zachary (2005) studied the probability of achieving a receding boundary on a time interval of random length by a random walk with a heavy-tailed jump distribution. They have proposed and developed a new approach that allows one to generalise the results of Asmussen (1998) to the case of arbitrary stopping times and to a wide class of nonlinear boundaries, and to obtain uniform results over all stopping times. In this paper, we consider a class of branching random walks with fading branching and obtain results on the tail asymptotics for the maximum of a branching random walk on a time interval of random (possibly unlimited) length, as well as uniform results within a class of bounded random time intervals.
引用
收藏
页码:318 / 335
页数:18
相关论文
共 15 条
  • [1] Asmussen S, 1998, ANN APPL PROBAB, V8, P354
  • [2] Asymptotics of randomly stopped sums in the presence of heavy tails
    Denisov, Denis
    Foss, Serguei
    Korshunov, Dmitry
    [J]. BERNOULLI, 2010, 16 (04) : 971 - 994
  • [3] MAXIMA OF BRANCHING RANDOM-WALKS
    DURRETT, R
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 165 - 170
  • [4] The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk
    Foss, S
    Palmowski, Z
    Zachary, S
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (03) : 1936 - 1957
  • [5] Foss S, 2003, ANN APPL PROBAB, V13, P37
  • [6] TWO-DIMENSIONAL RUIN PROBABILITY FOR SUBEXPONENTIAL CLAIM SIZE
    Foss, Sergey
    Korshunov, Dmitry
    Palmowski, Zbigniew
    Rolski, Tomasz
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (02): : 319 - 335
  • [7] Foss S, 2011, SPRINGER SER OPER RE, P1, DOI 10.1007/978-1-4419-9473-8
  • [8] On Sums of Conditionally Independent Subexponential Random Variables
    Foss, Serguei
    Richards, Andrew
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 102 - 119
  • [9] The maximum of a branching random walk with semiexponential increments
    Gantert, N
    [J]. ANNALS OF PROBABILITY, 2000, 28 (03) : 1219 - 1229
  • [10] Kersting G., 2017, Discrete time branching processes in random environment, DOI [10.1002/9781119452898, DOI 10.1002/9781119452898]