Robust admissibility of uncertain switched singular systems

被引:55
作者
Chadli, M. [1 ]
Darouach, M. [1 ]
机构
[1] Univ Picardie Jules Verne, MIS EA 4290, F-80000 Amiens, France
关键词
singular systems; switched systems; uncertainty; state-feedback control; static output control; strict LMIs; H-INFINITY-CONTROL; OUTPUT-FEEDBACK CONTROL; DISCRETE-TIME-SYSTEMS; DESCRIPTOR SYSTEMS; LINEAR-SYSTEMS; STABILIZATION; STABILITY; DESIGN;
D O I
10.1080/00207179.2011.615865
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article investigates the robust admissibility of uncertain discrete-time switched singular systems. First, the admissibility is introduced, by using the switched Lyapunov function, for singular systems. Sufficient conditions for robust admissibility of uncertain switched singular systems are presented in strict linear matrix inequalities formulation. Robust admissibility condition designs for both state feedback and static output control feedback are then derived. Numerical examples are provided to illustrate our approach.
引用
收藏
页码:1587 / 1600
页数:14
相关论文
共 43 条
[1]  
[Anonymous], 1989, SINGULAR CONTROL SYS, DOI DOI 10.1007/BFB0002475
[2]  
Bin M., 2006, ACTA AUTOMATICA SINI, V32, P180
[3]   Descriptor discrete-time systems with random abrupt changes: stability and stabilisation [J].
Boukas, E. K. ;
Xia, Y. .
INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (08) :1311-1318
[4]   High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback [J].
Boukas, TK ;
Habetler, TG .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2004, 19 (04) :1022-1028
[5]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[6]   Feedback design for regularizing descriptor systems [J].
Bunse-Gerstner, A ;
Byers, R ;
Mehrmann, V ;
Nichols, NK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :119-151
[7]  
Chadli M., 2008, 17 IFAC WORLD C SEOU
[8]   Sufficient LMI conditions for output feedback control problems [J].
Crusius, CAR ;
Trofino, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1053-1057
[9]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[10]   Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach [J].
Daafouz, J ;
Riedinger, P ;
Iung, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) :1883-1887