Bifurcations of periodic orbits, subharmonic solutions and invariant Tori of high-dimensional systems

被引:24
作者
Han, MA
Jiang, K [1 ]
Green, D
机构
[1] Kettering Univ, Dept Sci & Math, Flint, MI 48504 USA
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
关键词
periodic orbit; subharmonic solution; invariant torus;
D O I
10.1016/S0362-546X(97)00669-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:319 / 329
页数:11
相关论文
共 13 条
[1]   LYAPUNOV-SCHMIDT REDUCTION AND MELNIKOV INTEGRALS FOR BIFURCATION OF PERIODIC-SOLUTIONS IN COUPLED OSCILLATORS [J].
CHICONE, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (02) :407-447
[2]   PERIODIC-SOLUTIONS OF A SYSTEM OF COUPLED OSCILLATORS NEAR RESONANCE [J].
CHICONE, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) :1257-1283
[5]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[6]  
HAN M, 1996, CHIN ANN MATH A, V17, P179
[7]  
Han M., 1996, SCI CHINA SER A, V5, P509
[8]  
Han M., 1995, DISCRETE IMPULSIVE S, V1, P267
[9]  
Han M., 1994, SCI CHINA SER A, V11, P1325
[10]   Boundedness of solutions and existence of limit cycles for a nonlinear system [J].
Jiang, K ;
Han, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (12) :1995-2006