The Role of Electron-Phonon Interaction in Heavily Doped Fine-Grained Bulk Silicons as Thermoelectric Materials

被引:51
作者
Zhu, Tiejun [1 ]
Yu, Guanting [1 ]
Xu, Jing [1 ]
Wu, Haijun [2 ]
Fu, Chenguang [1 ]
Liu, Xiaohua [1 ]
He, Jiaqing [2 ]
Zhao, Xinbing [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] South Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Peoples R China
关键词
LATTICE THERMAL-CONDUCTIVITY; GE-SI ALLOYS; POWER-GENERATION; SOLID-SOLUTIONS; TRANSPORT-PROPERTIES; BOUNDARY SCATTERING; PERFORMANCE; SEMICONDUCTORS; EFFICIENCY; FIGURE;
D O I
10.1002/aelm.201600171
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High thermal conductivity of silicon limits its application prospect in thermoelectric technology for direct thermal to electrical energy conversion. Nanostructuring has been demonstrated to be an effective approach for significantly reducing lattice thermal conductivity of silicon and hence improving thermoelectric figure of merit zT due to the enhanced phonon scattering at boundaries. Here, it is shown that in fine-grained (approximate to 800 nm) heavily doped bulk silicon with optimized carrier concentration, electron-phonon scattering also plays an important role in the phonon transport in silicon above room temperature, and contributes with a approximate to 36% reduction in lattice thermal conductivity of heavily doped Si0.94P0.06 at room temperature. Benefiting from the sharp decline of the lattice thermal conductivity, the zT value of the samples increases by a factor of approximate to 3 compared with the single-crystal silicon. The results can also be extended to other high efficiency thermoelectric materials with high optimal carrier concentration for understanding and optimizing phonon transport and thermoelectric performance.
引用
收藏
页数:6
相关论文
共 60 条
[1]  
[Anonymous], 1995, CRC HDB THERMOELECTR
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[4]   Yb14MnSb11:: New high efficiency thermoelectric material for power generation [J].
Brown, SR ;
Kauzlarich, SM ;
Gascoin, F ;
Snyder, GJ .
CHEMISTRY OF MATERIALS, 2006, 18 (07) :1873-1877
[5]   Nanostructured Bulk Silicon as an Effective Thermoelectric Material [J].
Bux, Sabah K. ;
Blair, Richard G. ;
Gogna, Pawan K. ;
Lee, Hohyun ;
Chen, Gang ;
Dresselhaus, Mildred S. ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2445-2452
[6]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[7]   NONLOCAL PSEUDOPOTENTIAL CALCULATIONS FOR ELECTRONIC-STRUCTURE OF 11 DIAMOND AND ZINCBLENDE SEMICONDUCTORS [J].
CHELIKOWSKY, JR ;
COHEN, ML .
PHYSICAL REVIEW B, 1976, 14 (02) :556-582
[8]   Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides [J].
Chen, Xi ;
Girard, Steven N. ;
Meng, Fei ;
Lara-Curzio, Edgar ;
Jin, Song ;
Goodenough, John B. ;
Zhou, Jianshi ;
Shi, Li .
ADVANCED ENERGY MATERIALS, 2014, 4 (14)
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6