Wavelet series built using multifractal measures

被引:3
作者
Barral, J [1 ]
Seuret, S [1 ]
机构
[1] INRIA Rocquencourt, Equipe Sosso2, F-78153 Le Chesnay, France
关键词
D O I
10.1016/j.crma.2005.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a positive locally finite Borel measure on R. A natural way to construct multifractal wavelet series F-mu (x) = Sigma(j >= 0),(k is an element of Z)d(j),(k)psi(j),(k)(x) is to set vertical bar d(j,k)vertical bar = 2(-j(s0-1/p0))mu([k2(-j), (k+1))(1/p0) where s0, p0 >= 0, so - 1/po > 0. Under suitable conditions, the function FP inherits the multifractal properties of mu. The transposition of multifractal properties works with most classes of statistically self-similar multifractal measures. Several perturbations of the wavelet coefficients and their impact on the multifractal nature of FP are studied. As an application, the multifractal spectrum of the celebrated W-cascades introduced by Arneodo et al. is obtained.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 12 条
[1]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[2]  
BARAL J, 2004, RENEWAL SINGULARITY
[3]  
BARRAL J, 2005, IN PRESS J FOURIER A
[4]  
BARRAL J, 2005, IN PRESS J STAT PHYS
[5]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790
[6]  
FAN AH, 1980, ANAL THEORY APPL, V20, P113
[7]   On lacunary wavelet series [J].
Jaffard, S .
ANNALS OF APPLIED PROBABILITY, 2000, 10 (01) :313-329
[8]  
JAFFARD S, 2004, P S PURE MATH, V72
[9]   CERTAIN MARTINGALES OF MANDELBROT,B [J].
KAHANE, JP ;
PEYRIERE, J .
ADVANCES IN MATHEMATICS, 1976, 22 (02) :131-145
[10]   INTERMITTENT TURBULENCE IN SELF-SIMILAR CASCADES - DIVERGENCE OF HIGH MOMENTS AND DIMENSION OF CARRIER [J].
MANDELBROT, BB .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :331-358