Controlling domain wall oscillations in bent cylindrical magnetic wires

被引:18
作者
Cacilhas, R. [1 ]
de Araujo, C. I. L. [1 ]
Carvalho-Santos, V. L. [1 ]
Moreno, R. [2 ]
Chubykalo-Fesenko, O. [3 ]
Altbir, D. [4 ]
机构
[1] Univ Fed Vicosa, Dept Fis, Ave Peter Henry Rolfs S-N, BR-36570000 Vicosa, MG, Brazil
[2] Univ Edinburgh, Sch Geosci Earth & Planetary Sci, Edinburgh EH9 3FE, Midlothian, Scotland
[3] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain
[4] Univ Santiago Chile, CEDENNA, Dept Fis, Ave Ecuador 3493, Santiago, Chile
基金
英国自然环境研究理事会;
关键词
INTERNET; THINGS; MOTION;
D O I
10.1103/PhysRevB.101.184418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic cylindrical nanowires are promising candidates for future three-dimensional nanotechnology. Domain walls (DWs) in magnetic nanowires play the role of information carriers, and the development of applications requires proper description of their dynamics. Here we perform a detailed analytical and numerical analysis of the DW motion along a bent magnetic nanowire under the action of tangential magnetic fields. Our results show that the DW velocity, precession, and oscillation frequencies can be controlled by the interplay between the curvature and the external magnetic field. Small magnetic fields induce a DW motion without precession and oscillatory behavior, while higher magnetic fields yield a Walker breakdown regime, in which an oscillatory forward and backward DW motion is observed. Controlled DW motion under the Walker breakdown regime makes magnetic nanowires potential candidates for nanoscale microwave generation and sensing.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism [J].
Angel Fernandez-Roldan, Jose ;
Perez del Real, Rafael ;
Bran, Cristina ;
Vazquez, Manuel ;
Chubykalo-Fesenko, Oksana .
NANOSCALE, 2018, 10 (13) :5923-5927
[2]   The Internet of Things: A survey [J].
Atzori, Luigi ;
Iera, Antonio ;
Morabito, Giacomo .
COMPUTER NETWORKS, 2010, 54 (15) :2787-2805
[3]   Magnonic crystal as a delay line for low-noise auto-oscillators [J].
Bankowski, Elena ;
Meitzler, Thomas ;
Khymyn, Roman S. ;
Tiberkevich, Vasil S. ;
Slavin, Andrei N. ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2015, 107 (12)
[4]   Monopole-Induced Emergent Electric Fields in Ferromagnetic Nanowires [J].
Charilaou, Michalis ;
Braun, Hans-Benjamin ;
Loffler, Jorg F. .
PHYSICAL REVIEW LETTERS, 2018, 121 (09)
[5]   Observation of Bloch-point domain walls in cylindrical magnetic nanowires [J].
Da Col, S. ;
Jamet, S. ;
Rougemaille, N. ;
Locatelli, A. ;
Mentes, T. O. ;
Burgos, B. Santos ;
Afid, R. ;
Darques, M. ;
Cagnon, L. ;
Toussaint, J. C. ;
Fruchart, O. .
PHYSICAL REVIEW B, 2014, 89 (18)
[6]   Three-dimensional nanomagnetism [J].
Fernandez-Pacheco, Amalio ;
Streubel, Robert ;
Fruchart, Olivier ;
Hertel, Riccardo ;
Fischer, Peter ;
Cowburn, Russell P. .
NATURE COMMUNICATIONS, 2017, 8
[7]  
Foster H., 2002, J APPL PHYS, V91, P6914
[8]   Winding number selection on merons by Gaussian curvature's sign [J].
Gabriel Elias, Ricardo ;
Vidal-Silva, Nicolas ;
Carvalho-Santos, Vagson L. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Curvature Effects in Thin Magnetic Shells [J].
Gaididei, Yuri ;
Kravchuk, Volodymyr P. ;
Sheka, Denis D. .
PHYSICAL REVIEW LETTERS, 2014, 112 (25)
[10]   Domain wall motion in magnetic nanowires: an asymptotic approach [J].
Goussev, Arseni ;
Lund, Ross G. ;
Robbins, J. M. ;
Slastikov, Valeriy ;
Sonnenberg, Charles .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2160)