Bryuno function and the standard map

被引:25
作者
Berretti, A
Gentile, G
机构
[1] Univ Roma Tor Vergata 2, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma 3, Dipartimento Matemat, I-00146 Rome, Italy
关键词
D O I
10.1007/s002200100456
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the standard map the homotopically non-trivial invariant curves of rotation number omega satisfying the Bryuno condition are shown to be analytic in the perturbative parameter epsilon, provided /epsilon/ is small enough. The radius of convergence rho(omega) of the Lindstedt series - sometimes called critical function of the standard map - is studied and the relation with the Bryuno function B(omega) is derived: the quantity /log rho(omega) + 2B(omega)/ is proved to be bounded uniformly in omega.
引用
收藏
页码:623 / 656
页数:34
相关论文
共 18 条
[1]  
[Anonymous], 1996, MATH PHYS ELECT J
[2]   Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps [J].
Berretti, A ;
Gentile, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :691-713
[3]   SCALING NEAR RESONANCES AND COMPLEX ROTATION NUMBERS FOR THE STANDARD MAP [J].
BERRETTI, A ;
MARMI, S .
NONLINEARITY, 1994, 7 (02) :603-621
[4]   Scaling properties for the radius of convergence of a Lindstedt series: The standard map [J].
Berretti, A ;
Gentile, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (02) :159-176
[5]   NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS [J].
BERRETTI, A ;
CELLETTI, A ;
CHIERCHIA, L ;
FALCOLINI, C .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1613-1630
[6]  
Bonetto F., 1998, ANN SC NORM SUPER S, V26, P545
[7]   THE CRITICAL FUNCTION FOR THE SEMISTANDARD MAP [J].
DAVIE, AM .
NONLINEARITY, 1994, 7 (01) :219-229
[8]  
DAVIE AM, UNPUB RENORMALIZATIO
[9]   TWISTLESS KAM TORI [J].
GALLAVOTTI, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :145-156
[10]   MAJORANT SERIES CONVERGENCE FOR TWISTLESS KAM TORI [J].
GALLAVOTTI, G ;
GENTILE, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :857-869