Tox-GAN: An Artificial Intelligence Approach Alternative to Animal Studies-A Case Study With Toxicogenomics

被引:37
作者
Chen, Xi [1 ]
Roberts, Ruth [2 ,3 ]
Tong, Weida [1 ]
Liu, Zhichao [1 ]
机构
[1] US FDA, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA
[2] ApconiX Ltd, Alderley Edge SK10 4TG, England
[3] Univ Birmingham, Dept Biosci, Birmingham B15 2TT, W Midlands, England
关键词
new approach methodologies; generative adversarial network; toxicogenomics; animal models; artificial intelligence; DRUG; TOXICITY; DATABASE;
D O I
10.1093/toxsci/kfab157
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Animal studies are a critical component in biomedical research, pharmaceutical product development, and regulatory submissions. There is a worldwide effort in toxicology toward "reducing, refining, and replacing" animal use. Here, we proposed a deep generative adversarial network (GAN)-based framework capable of deriving new animal results from existing animal studies without additional experiments. To prove the concept, we employed this Tox-GAN framework to generate both gene activities and expression profiles for multiple doses and treatment durations in toxicogenomics (TGx). Using the pre-existing rat liver TGx data from the Open Toxicogenomics Project-Genomics-Assisted Toxicity Evaluation System (Open TG-GATES), we generated Tox-GAN transcriptomic profiles with high similarity (0.997 +/- 0.002 in intensity and 0.740 +/- 0.082 in fold change) to the corresponding real gene expression profiles. Consequently, Tox-GAN showed an outstanding performance in 2 critical TGx applications, gaining a molecular understanding of underlying toxicological mechanisms and gene expression-based biomarker development. For the former, over 87% agreement in Gene Ontology was found between Tox-GAN results and real gene expression data. For the latter, the concordance of biomarkers between real and generated data was high in both predictive performance and biomarker genes. We also demonstrated that the Tox-GAN models constructed with the Open TG-GATES data were capable of generating transcriptomic profiles reported in DrugMatrix. Finally, we demonstrated potential utility for Tox-GAN in aiding chemical-based read-across. To the best of our knowledge, the proposed Tox-GAN model is novel in its ability to generate in vivo transcriptomic profiles at different treatment conditions from chemical structures. Overall, Tox-GAN holds great promise for generating high-quality toxicogenomic profiles without animal experimentation.
引用
收藏
页码:242 / 259
页数:18
相关论文
共 49 条
[1]   Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways [J].
AbdulHameed, Mohamed Diwan M. ;
Pannala, Venkat R. ;
Wallqvist, Anders .
FRONTIERS IN GENETICS, 2019, 10
[2]  
Alexa A., 2020, TOPGO ENRICHMENT ANA
[3]  
Ancona M., 2019, arXiv1903.10992
[4]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[5]   Toward Good Read-Across Practice (GRAP) Guidance [J].
Ball, Nicholas ;
Cronin, Mark T. D. ;
Shen, Jie ;
Blackburn, Karen ;
Booth, Ewan D. ;
Bouhifd, Mounir ;
Donley, Elizabeth ;
Egnash, Laura ;
Hastings, Charles ;
Juberg, Daland R. ;
Kleensang, Andre ;
Kleinstreuer, Nicole ;
Kroese, E. Dinant ;
Lee, Adam C. ;
Luechtefeld, Thomas ;
Maertens, Alexandra ;
Marty, Sue ;
Naciff, Jorge M. ;
Palmer, Jessica ;
Pamies, David ;
Penman, Mike ;
Richarz, Andrea-Nicole ;
Russo, Daniel P. ;
Stuard, Sharon B. ;
Patlewicz, Grace ;
van Ravenzwaay, Bennard ;
Wu, Shengde ;
Zhu, Hao ;
Hartung, Thomas .
ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) :149-166
[6]   Integrating Publicly Available Data to Generate Computationally Predicted Adverse Outcome Pathways for Fatty Liver [J].
Bell, Shannon M. ;
Angrish, Michelle M. ;
Wood, Charles E. ;
Edwards, Stephen W. .
TOXICOLOGICAL SCIENCES, 2016, 150 (02) :510-520
[7]   Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity [J].
Cai, Chuipu ;
Guo, Pengfei ;
Zhou, Yadi ;
Zhou, Jingwei ;
Wang, Qi ;
Zhang, Fengxue ;
Fang, Jiansong ;
Cheng, Feixiong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1073-1084
[8]   The Comparative Toxicogenomics Database: update 2017 [J].
Davis, Allan Peter ;
Grondin, Cynthia J. ;
Johnson, Robin J. ;
Sciaky, Daniela ;
King, Benjamin L. ;
McMorran, Roy ;
Wiegers, Jolene ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D972-D978
[9]  
Flecknell P, 2002, ALTEX-ALTERN TIEREXP, V19, P73
[10]   Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action [J].
Ganter, B ;
Tugendreich, S ;
Pearson, CI ;
Ayanoglu, E ;
Baumhueter, S ;
Bostian, KA ;
Brady, L ;
Browne, LJ ;
Calvin, JT ;
Day, GJ ;
Breckenridge, N ;
Dunlea, S ;
Eynon, BP ;
Furness, LM ;
Ferng, J ;
Fielden, MR ;
Fujimoto, SY ;
Gong, L ;
Hu, C ;
Idury, R ;
Judo, MSB ;
Kolaja, KL ;
Lee, MD ;
McSorley, C ;
Minor, JM ;
Nair, RV ;
Natsoulis, G ;
Nguyen, P ;
Nicholson, SM ;
Pham, H ;
Roter, AH ;
Sun, DX ;
Tan, SQ ;
Thode, S ;
Tolley, AM ;
Vladimirova, A ;
Yang, J ;
Zhou, ZM ;
Jarnagin, K .
JOURNAL OF BIOTECHNOLOGY, 2005, 119 (03) :219-244