Non-hypergeometric Type of Polynomials and Solutions of Schrodinger Equation with Position-Dependent Mass

被引:1
作者
Ju Guo-Xing [1 ]
机构
[1] Nanjing Univ, Coll Phys, Nanjing 210093, Peoples R China
关键词
Schrodinger equation; position-dependent mass; eigenfunction; eigenvalue; coordinate transformation method; polynomials solution; NONZERO MINIMAL UNCERTAINTIES; SHAPE-INVARIANT POTENTIALS; SOLVABLE POTENTIALS; HARMONIC-OSCILLATOR; SUPERSYMMETRIC APPROACH; QUANTUM-MECHANICS; WAVE; TRANSFORMATION; GENERATION; ALGEBRAS;
D O I
10.1088/0253-6102/56/2/07
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the coordinate transformation method, we study the polynomial solutions of the Schrodinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunctions and Hermiticity of the Hamiltonian are also analyzed.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 41 条
[1]  
Alhaidari AD, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.042116
[2]   Morse potential and its relationship with the Coulomb in a position-dependent mass background [J].
Bagchi, B. ;
Corain, P. S. ;
Quesne, C. .
MODERN PHYSICS LETTERS A, 2006, 21 (36) :2703-2708
[3]   New approach to (quasi-) exactly solvable Schrodinger equations with a position-dependent effective mass [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
EUROPHYSICS LETTERS, 2005, 72 (02) :155-161
[4]   Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass [J].
Bagchi, B ;
Banerjee, A ;
Quesne, C ;
Tkachuk, VM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13) :2929-2945
[5]   A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
MODERN PHYSICS LETTERS A, 2004, 19 (37) :2765-2775
[6]   SPACE-CHARGE EFFECTS ON ELECTRON TUNNELING [J].
BENDANIEL, DJ ;
DUKE, CB .
PHYSICAL REVIEW, 1966, 152 (02) :683-+
[7]  
BHATTACHARJIE A, 1962, NUOVO CIMENTO, V25, P864, DOI 10.1007/BF02733153
[8]  
Cai CY, 2005, COMMUN THEOR PHYS, V43, P1019
[9]  
COOPER F, 1995, PHYS REP, V251, P268
[10]   EXPLICIT WAVEFUNCTIONS FOR SHAPE-INVARIANT POTENTIALS BY OPERATOR TECHNIQUES [J].
DABROWSKA, JW ;
KHARE, A ;
SUKHATME, UP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (04) :L195-L200