Geometric deep learning on molecular representations

被引:178
作者
Atz, Kenneth [1 ]
Grisoni, Francesca [1 ,2 ]
Schneider, Gisbert [1 ,3 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, RETHINK, Zurich, Switzerland
[2] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[3] ETH Singapore SEC Ltd, Singapore, Singapore
基金
瑞士国家科学基金会;
关键词
NEURAL-NETWORKS; ORGANIC-CHEMISTRY; DRUG DISCOVERY; PREDICTION; LANGUAGE; DESIGN; TRANSFORMER; BINDING; SMILES; MODEL;
D O I
10.1038/s42256-021-00418-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geometric deep learning (GDL) is based on neural network architectures that incorporate and process symmetry information. GDL bears promise for molecular modelling applications that rely on molecular representations with different symmetry properties and levels of abstraction. This Review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction and quantum chemistry. It contains an introduction to the principles of GDL, as well as relevant molecular representations, such as molecular graphs, grids, surfaces and strings, and their respective properties. The current challenges for GDL in the molecular sciences are discussed, and a forecast of future opportunities is attempted. Geometric representations are becoming more important in molecular deep learning as the spatial structure of molecules contains important information about their properties. Kenneth Atz and colleagues review current progress and challenges in this emerging field of geometric deep learning.
引用
收藏
页码:1023 / 1032
页数:10
相关论文
共 147 条
[1]  
Ahmed E., 2018, A survey on Deep Learning Advances on Different 3D Data Representations
[2]  
Anderson B., 2019, 33 INT C NEUR INF PR, P14537
[3]  
[Anonymous], 2017, Molecular generation with recurrent neural networks (rnns)
[4]   Randomized SMILES strings improve the quality of molecular generative models [J].
Arus-Pous, Josep ;
Johansson, Simon Viet ;
Prykhodko, Oleksii ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (01)
[5]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[6]  
Battaglia PW, 2016, ADV NEUR IN, V29
[7]  
Battaglia PW, 2018, ARXIV PREPRINT ARXIV
[8]  
Batzner S., SE3 EQUIVARIANT GRAP
[9]   The properties of known drugs .1. Molecular frameworks [J].
Bemis, GW ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) :2887-2893
[10]  
Bian Y., 2020, Adv. Neural Inf. Process. Syst., V33, P12559, DOI DOI 10.48550/ARXIV.2007.02835