Exocrine pancreas development in zebrafish

被引:100
作者
Yee, NS
Lorent, K
Pack, M [1 ]
机构
[1] Univ Penn, Sch Med, Dept Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
关键词
exocrine pancreas; zebrafish; development; duct; acinus; jagged; notch;
D O I
10.1016/j.ydbio.2005.04.035
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although many of the genes that regulate development of the endocrine pancreas have been identified, comparatively little is known about how the exocrine pancreas forms. Previous studies have shown that exocrine pancreas development may be modeled in zebrafish. However, the timing and mechanism of acinar and ductal differentiation and morphogenesis have not been described. Here, we characterize zebrafish exocrine pancreas development in wild type and mutant larvae using histological, immunohistochemical and ultrastructural analyses. These data allow us to identify two stages of zebrafish exocrine development. During the first stage, the exocrine anlage forms from rostral endodermal cells. During the second stage, protodifferentiated progenitor cells undergo terminal differentiation followed by acinar gland and duct morphogenesis. Immunohistochemical analyses support a model in which the intrapancreatic ductal system develops from progenitors that join to form a contiguous network rather than by branching morphogenesis of the pancreatic epithelium, as described for mammals. Contemporaneous appearance of acinar glands and ducts in developing larvae and their disruption in pancreatic mutants suggest that common molecular pathways may regulate gland and duct morphogenesis and differentiation of their constituent cells. By contrast, analyses of mind bomb mutants and jagged morpholino-injected larvae suggest that Notch signaling principally regulates ductal differentiation of bipotential exocrine progenitors. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:84 / 101
页数:18
相关论文
共 66 条
[1]   Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells [J].
Ahlgren, U ;
Pfaff, SL ;
Jessell, TM ;
Edlund, T ;
Edlund, H .
NATURE, 1997, 385 (6613) :257-260
[2]   Notch signalling controls pancreatic cell differentiation [J].
Apelqvist, Å ;
Li, H ;
Sommer, L ;
Beatus, P ;
Anderson, DJ ;
Honjo, T ;
de Angelis, MH ;
Lendahl, U ;
Edlund, H .
NATURE, 1999, 400 (6747) :877-881
[3]  
ARIAS AE, 1993, LAB INVEST, V69, P518
[4]   Pancreatic cancer biology and genetics [J].
Bardeesy, N ;
DePinho, RA .
NATURE REVIEWS CANCER, 2002, 2 (12) :897-909
[5]  
Bhushan A, 2001, DEVELOPMENT, V128, P5109
[6]   Pancreas development in zebrafish: Early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet [J].
Biemar, F ;
Argenton, F ;
Schmidtke, R ;
Epperlein, S ;
Peers, B ;
Driever, W .
DEVELOPMENTAL BIOLOGY, 2001, 230 (02) :189-203
[7]   Ethanol impairs migration of the prechordal plate in the zebrafish embryo [J].
Blader, P ;
Strähle, U .
DEVELOPMENTAL BIOLOGY, 1998, 201 (02) :185-201
[8]   orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization [J].
Cano, DA ;
Murcia, NS ;
Pazour, GJ ;
Hebrok, M .
DEVELOPMENT, 2004, 131 (14) :3457-3467
[9]  
Chen JN, 1996, DEVELOPMENT, V123, P293
[10]  
DELISLE RC, 1990, EUR J CELL BIOL, V51, P64