Relativistic nuclear energy density functionals: Mean-field and beyond

被引:508
作者
Niksic, T. [1 ]
Vretenar, D. [1 ]
Ring, P. [2 ]
机构
[1] Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, Croatia
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
关键词
Nuclear structure; Nuclear density functional theory and extensions; Collective correlations; GENERATOR-COORDINATE-METHOD; HARTREE-BOGOLIUBOV THEORY; GROUND-STATE PROPERTIES; COLLECTIVE MOTION; WAVE-FUNCTIONS; QUANTUM HADRODYNAMICS; SHAPE COEXISTENCE; ANGULAR-MOMENTUM; PARTICLE NUMBER; FINITE NUCLEI;
D O I
10.1016/j.ppnp.2011.01.055
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Relativistic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing a complete and accurate, global description of nuclear ground states and collective excitations. Guided by the medium dependence of the microscopic nucleon self-energies in nuclear matter, semi-empirical functionals have been adjusted to the nuclear matter equation of state and to bulk properties of finite nuclei, and applied to studies of arbitrarily heavy nuclei, exotic nuclei far from stability, and even systems at the nucleon drip-lines. REDF-based structure models have also been developed that go beyond the static mean-field approximation, and include collective correlations related to the restoration of broken symmetries and to fluctuations of collective variables. These models are employed in analyses of structure phenomena related to shell evolution, including detailed predictions of excitation spectra and electromagnetic transition rates. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:519 / 548
页数:30
相关论文
共 122 条
[21]   Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model -: art. no. 044308 [J].
Bürvenich, T ;
Madland, DG ;
Maruhn, JA ;
Reinhard, PG .
PHYSICAL REVIEW C, 2002, 65 (04) :443081-4430823
[22]   Shape coexistence in neutron-deficient krypton isotopes [J].
Clement, E. ;
Gorgen, A. ;
Korten, W. ;
Bouchez, E. ;
Chatillon, A. ;
Delaroche, J.-P. ;
Girod, M. ;
Goutte, H. ;
Hurstel, A. ;
Le Coz, Y. ;
Obertelli, A. ;
Peru, S. ;
Theisen, Ch. ;
Wilson, J. N. ;
Zielinska, M. ;
Andreoiu, C. ;
Becker, F. ;
Butler, P. A. ;
Casandjian, J. M. ;
Catford, W. N. ;
Czosnyka, T. ;
de France, G. ;
Gerl, J. ;
Herzberg, R.-D. ;
Iwanicki, J. ;
Jenkins, D. G. ;
Jones, G. D. ;
Napiorkowski, P. J. ;
Sletten, G. ;
Timis, C. N. .
PHYSICAL REVIEW C, 2007, 75 (05)
[23]   Shape coexistence and triaxiality in the superheavy nuclei [J].
Cwiok, S ;
Heenen, PH ;
Nazarewicz, W .
NATURE, 2005, 433 (7027) :705-709
[24]   Asymmetric nuclear matter in the relativistic Brueckner-Hartree-Fock approach [J].
de Jong, F ;
Lenske, H .
PHYSICAL REVIEW C, 1998, 57 (06) :3099-3107
[25]   Structure properties of even-even actinides at normal and super deformed shapes analysed using the Gogny force [J].
Delaroche, J. -P. ;
Girod, M. ;
Goutte, H. ;
Libert, J. .
NUCLEAR PHYSICS A, 2006, 771 :103-168
[26]   Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction [J].
Delaroche, J. -P. ;
Girod, M. ;
Libert, J. ;
Goutte, H. ;
Hilaire, S. ;
Peru, S. ;
Pillet, N. ;
Bertsch, G. F. .
PHYSICAL REVIEW C, 2010, 81 (01)
[27]   Particle-number projection and the density functional theory [J].
Dobaczewski, J. ;
Stoitsov, M. V. ;
Nazarewicz, W. ;
Reinhard, P. -G. .
PHYSICAL REVIEW C, 2007, 76 (05)
[28]  
Dreizler R., 1990, DENSITY FUNCTIONAL T
[29]   Toward ab initio density functional theory for nuclei [J].
Drut, J. E. ;
Furnstahl, R. J. ;
Platter, L. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2010, 64 (01) :120-168
[30]   Shape coexistence in 186Pb:: beyond-mean-field description by configuration mixing of symmetry restored wave functions [J].
Duguet, T ;
Bender, M ;
Bonche, P ;
Heenen, PH .
PHYSICS LETTERS B, 2003, 559 (3-4) :201-206