Atomic structure of anthrax protective antigen pore elucidates toxin translocation

被引:187
作者
Jiang, Jiansen [1 ,2 ]
Pentelute, Bradley L. [3 ]
Collier, R. John [4 ]
Zhou, Z. Hong [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Med, Dept Microbiol & Immunobiol, Boston, MA 02115 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN TRANSLOCATION; PHENYLALANINE CLAMP; CRYSTAL-STRUCTURE; RECEPTOR; BINDING; SYSTEM; VISUALIZATION; MUTATIONS; SOFTWARE; DRIVEN;
D O I
10.1038/nature14247
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells(1). Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Phi)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet(2-9). Although atomic structures of protective antigen prepores are available(10-14), how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryoelectron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-angstrom resolution. The structure reveals the long-sought-after catalytic Phi-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.
引用
收藏
页码:545 / U323
页数:15
相关论文
共 49 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Structure of the Yeast Mitochondrial Large Ribosomal Subunit [J].
Amunts, Alexey ;
Brown, Alan ;
Bai, Xiao-chen ;
Llacer, Jose L. ;
Hussain, Tanweer ;
Emsley, Paul ;
Long, Fei ;
Murshudov, Garib ;
Scheres, Sjors H. W. ;
Ramakrishnan, V. .
SCIENCE, 2014, 343 (6178) :1485-1489
[3]  
Ballester P., 2012, IMPORTANCE PI INTERA, P79, DOI DOI 10.1002/9781119945888
[4]   Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins [J].
Basilio, Daniel ;
Jennings-Antipov, Laura D. ;
Jakes, Karen S. ;
Finkelstein, Alan .
JOURNAL OF GENERAL PHYSIOLOGY, 2011, 137 (04) :343-356
[5]   Evidence for a Proton-Protein Symport Mechanism in the Anthrax Toxin Channel [J].
Basilio, Daniel ;
Juris, Stephen J. ;
Collier, R. John ;
Finkelstein, Alan .
JOURNAL OF GENERAL PHYSIOLOGY, 2009, 133 (03) :307-314
[6]   Charge Requirements for Proton Gradient-driven Translocation of Anthrax Toxin [J].
Brown, Michael J. ;
Thoren, Katie L. ;
Krantz, Bryan A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (26) :23189-23199
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins [J].
De, Swastik ;
Olson, Rich .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) :7385-7390
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]   Ratcheting up protein translocation with anthrax toxin [J].
Feld, Geoffrey K. ;
Brown, Michael J. ;
Krantz, Bryan A. .
PROTEIN SCIENCE, 2012, 21 (05) :606-624