Generalization of weighted Ostrowski-Gruss type inequality by using Korkine's identity

被引:1
作者
Dragomir, Silvestru Sever [1 ]
Irshad, Nazia [2 ]
Khan, Asif R. [2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, POB 14428, Melbourne, Vic, Australia
[2] Univ Karachi, Dept Math, Univ Rd, Karachi 75270, Pakistan
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2020年 / 65卷 / 02期
关键词
Weighted Ostrowski-Gruss Inequality; Euclidean norm; Weighted Korkine's identity; Probability density;
D O I
10.24193/subbmath.2020.2.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain generalized weighted Ostrowski-Gruss type inequality with parameters for differentiable functions by using the weighted Korkine's identity, and we then apply these obtained inequalities to probability density functions. Also, we discuss some applications of numerical quadrature rules.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 13 条
[1]  
Barnett N.S., 2001, J. Inequal. Pure and Appl. Math, V2
[2]  
Barnett N.S., 2000, PREPRINT RGMIA RES R, V3
[3]  
Barnett N. S., 2001, DEMONSTR MATH, V34, P533
[4]   An inequality of Ostrowski-Gruss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules [J].
Dragomir, SS ;
Wang, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (11) :15-20
[6]  
Imtiaz M., 2016, ADV INEQUAL APPL, V20
[7]  
Irshad N., 2018, TJMM, V10, P15
[8]   Improvement and further generalization of inequalities of Ostrowski-Gruss type [J].
Matic, M ;
Pecaric, J ;
Ujevic, N .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) :161-175
[9]  
Mitrinovi~c D.S., 1991, INEQUALITIES FUNCTIO
[10]  
Mitrinovi~c D.S, 1991, CLASSICAL NEW INEQUA