Linear transformations preserving log-convexity

被引:0
作者
Liu, Lily L. [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Log-convexity; Log-concavity; q-Log-convexity; Linear transformations; Stirling numbers; Lah numbers; Whitney numbers; Dowling lattice; WHITNEY NUMBERS; CONJECTURE; SEQUENCES; PROOF;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study linear transformations preserving log-convexity, when the triangular array satisfies some ordinary convolution. As applications, we show that the Stirling transformations of two kinds, the Lah transformation, the generalized Stirling transformation of the second kind and the Dowling transformations of two kinds preserve the log-convexity.
引用
收藏
页码:473 / 483
页数:11
相关论文
共 22 条
  • [1] [Anonymous], 1973, J. Combin. Theory, Ser. B, DOI [10.1016/S0095-8956(73)80007-3, DOI 10.1016/S0095-8956(73)80007-3]
  • [2] [Anonymous], 1958, An Introduction to Combinatorial Analysis
  • [3] [Anonymous], J COMBIN THEORY B
  • [4] On Whitney numbers of Dowling lattices
    Benoumhani, M
    [J]. DISCRETE MATHEMATICS, 1996, 159 (1-3) : 13 - 33
  • [5] On some numbers related to Whitney numbers of Dowling lattices
    Benoumhani, M
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (01) : 106 - 116
  • [6] Brenti F., 1994, Contemp. Math., V178, P71
  • [7] Brenti F., 1989, Mem. Am. Math. Soc., V413
  • [8] Schur positivity and the q-log-convexity of the Narayana polynomials
    Chen, William Y. C.
    Wang, Larry X. W.
    Yang, Arthur L. B.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 303 - 338
  • [9] The q-log-convexity of the Narayana polynomials of type B
    Chen, William Y. C.
    Tang, Robert L.
    Wang, Larry X. W.
    Yang, Arthur L. B.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (02) : 85 - 110
  • [10] Comtet L., 1974, ADV COMBINATORICS