Some applications of the generalized Eulerian numbers

被引:5
作者
Rzadkowski, Grzegorz [1 ]
Urlinska, Malgorzata [2 ]
机构
[1] Warsaw Univ Technol, Dept Finance & Risk Management, Ludwika Narbutta 85, PL-00999 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Math & Comp Sci, Koszykowa 75, PL-00662 Warsaw, Poland
关键词
Eulerian number; Second-order Eulerian number; Bernoulli number; Autonomous differential equation; Integral representation; BERNOULLI NUMBERS; POLYNOMIALS;
D O I
10.1016/j.jcta.2018.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we generalize the Eulerian numbers (also of the second and third orders). The generalization is related to an autonomous first-order differential equation, solutions of which are used to obtain integral representations of some numbers, including the Bernoulli numbers. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 24 条
[1]  
[Anonymous], EXPRESSIONS INVOLVIN
[2]  
[Anonymous], 2007, ANAL MATH
[3]  
[Anonymous], 1736, Comment. Acad. Sci. Petrop
[4]  
[Anonymous], 1958, An Introduction to Combinatorial Analysis
[5]  
[Anonymous], 2006, P ICNAAM 2006
[6]  
[Anonymous], The On-Line Encyclopedia of Integer Sequences-A338706-Number of 2-linear trees on n nodes
[7]   Bivariate generating functions for a class of linear recurrences: General structure [J].
Barbero G, J. Fernando ;
Salas, Jesus ;
Villasenor, Eduardo J. S. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 :146-165
[8]   COMBINATORIAL PROPERTY OF Q-EULERIAN NUMBERS [J].
CARLITZ, L .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01) :51-54
[9]  
CARLITZ L, 1954, T AM MATH SOC, V76, P332
[10]  
Chung F, 2010, J COMB, V1, P29