Finite Toda lattice and classical moment problem

被引:2
作者
Mikhaylov, A. S. [1 ,2 ]
Mikhaylov, V. S. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, 7 Fontanka, St Petersburg 191023, Russia
[2] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2020年 / 11卷 / 01期
关键词
Toda lattice; moment problem; Jacobi matrices; SYSTEMS;
D O I
10.17586/2220-8054-2020-11-1-25-29
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the problem of computing the solution to finite Toda lattice. Specifically, we describe the evolution of moments of the spectral measure of a Jacobi matrix entering in the Lax pair.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 1989, Springer Series in Solid-State Sciences
[2]  
[Anonymous], 2020, The classical moment problem and some related questions in analysis
[3]  
Cho K., 2003, OPTICAL RESPONSE NAN
[4]  
Faddeev L.D., 2007, Hamiltonian Methods in the Theory of Solitons
[5]   m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices [J].
Gesztesy, F ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 :267-297
[6]   Inverse dynamic problems for canonical systems and de Branges spaces [J].
Mikhaylov, A. S. ;
Mikhaylov, V. S. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2018, 9 (02) :215-224
[7]  
Mikhaylov A.S., INVERSE PROBLEM DYNA
[8]  
Mikhaylov A.S., J PHYS C SERIES IOP
[9]   The boundary control method and de Branges spaces. Schrodinger equation, Dirac system and discrete Schrodinger operator [J].
Mikhaylov, Alexander ;
Mikhaylov, Victor .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) :927-953
[10]   On the relationship between Weyl functions of Jacobi matrices and response vectors for special dynamical systems with discrete time [J].
Mikhaylov, Alexander S. ;
Mikhaylov, Victor S. ;
Simonov, Sergey A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6401-6408