Blowup for fractional NLS

被引:83
作者
Boulenger, Thomas [1 ]
Himmelsbach, Dominik [1 ]
Lenzmann, Enno [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Blowup; Fractional NLS; Fractional Laplacian; CAUCHY-PROBLEM; EQUATIONS; SOBOLEV;
D O I
10.1016/j.jfa.2016.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider fractional NLS with focusing power-type nonlinearity i partial derivative(t)u = (-Delta)(3)u - vertical bar u vertical bar(2 sigma)u, (t, x) epsilon R x R-N, where 1/2 < s < 1 and 0 < sigma < infinity for s N/2 and 0 < sigma <= 2s/(N - 2s) for s < N/2. We prove a general criterion for blowup of radial solutions in R-N with N >= 2 for L-2-supercritical and L-2-critical powers sigma >= 2s/N. In addition, we study the case of fractional NLS posed on a bounded star-shaped domain Omega subset of R-N in any dimension N >= 1 and subject to exterior Dirichlet conditions. In this setting, we prove a general blowup result without imposing any symmetry assumption on u(t,x) For the blowup proof in R-N, we derive a localized virial estimate for fractional NLS in R-N, which uses Balakrishnan's formula for the fractional Laplacian (-Delta)(s) from semigroup theory. In the setting of bounded domains, we use a Pohozaevtype estimate for the fractional Laplacian to prove blowup. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2569 / 2603
页数:35
相关论文
共 32 条
[1]  
Balakrishnan A. V., 1960, Pac. J. Math, V10, P419, DOI [10.2140/pjm.1960.10.419, DOI 10.2140/PJM.1960.10.419]
[2]  
Boulenger Thomas, 2016, MORAWETZ ESTIM UNPUB
[3]  
Boulenger Thomas, 2015, ANN SCI EC IN PRESS
[4]   Dispersive wave turbulence in one dimension [J].
Cai, D ;
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
PHYSICA D, 2001, 152 :551-572
[5]   On finite time blow-up for the mass-critical Hartree equations [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (03) :467-479
[6]   On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :193-224
[7]   Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :12-29
[8]   SOBOLEV INEQUALITIES WITH SYMMETRY [J].
Cho, Yonggeun ;
Ozawa, Tohru .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) :355-365
[9]  
Cho Yonggeun, 2015, ARXIV150200100
[10]   Uniqueness of Radial Solutions for the Fractional Laplacian [J].
Frank, Rupert L. ;
Lenzmann, Enno ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1671-1726