Blowup for fractional NLS

被引:79
作者
Boulenger, Thomas [1 ]
Himmelsbach, Dominik [1 ]
Lenzmann, Enno [1 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Blowup; Fractional NLS; Fractional Laplacian; CAUCHY-PROBLEM; EQUATIONS; SOBOLEV;
D O I
10.1016/j.jfa.2016.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider fractional NLS with focusing power-type nonlinearity i partial derivative(t)u = (-Delta)(3)u - vertical bar u vertical bar(2 sigma)u, (t, x) epsilon R x R-N, where 1/2 < s < 1 and 0 < sigma < infinity for s N/2 and 0 < sigma <= 2s/(N - 2s) for s < N/2. We prove a general criterion for blowup of radial solutions in R-N with N >= 2 for L-2-supercritical and L-2-critical powers sigma >= 2s/N. In addition, we study the case of fractional NLS posed on a bounded star-shaped domain Omega subset of R-N in any dimension N >= 1 and subject to exterior Dirichlet conditions. In this setting, we prove a general blowup result without imposing any symmetry assumption on u(t,x) For the blowup proof in R-N, we derive a localized virial estimate for fractional NLS in R-N, which uses Balakrishnan's formula for the fractional Laplacian (-Delta)(s) from semigroup theory. In the setting of bounded domains, we use a Pohozaevtype estimate for the fractional Laplacian to prove blowup. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2569 / 2603
页数:35
相关论文
共 32 条
  • [1] Balakrishnan A. V., 1960, Pac. J. Math, V10, P419, DOI [10.2140/pjm.1960.10.419, DOI 10.2140/PJM.1960.10.419]
  • [2] Boulenger Thomas, 2016, MORAWETZ ESTIM UNPUB
  • [3] Boulenger Thomas, 2015, ANN SCI EC IN PRESS
  • [4] Dispersive wave turbulence in one dimension
    Cai, D
    Majda, AJ
    McLaughlin, DW
    Tabak, EG
    [J]. PHYSICA D, 2001, 152 : 551 - 572
  • [5] On finite time blow-up for the mass-critical Hartree equations
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (03) : 467 - 479
  • [6] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [7] Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 12 - 29
  • [8] SOBOLEV INEQUALITIES WITH SYMMETRY
    Cho, Yonggeun
    Ozawa, Tohru
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) : 355 - 365
  • [9] Cho Yonggeun, 2015, ARXIV150200100
  • [10] Uniqueness of Radial Solutions for the Fractional Laplacian
    Frank, Rupert L.
    Lenzmann, Enno
    Silvestre, Luis
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) : 1671 - 1726