Chitin-Based Anisotropic Nanostructures of Butterfly Wings for Regulating Cells Orientation

被引:19
作者
Elbaz, Abdelrahman [1 ,2 ]
Lu, Jie [1 ,2 ]
Gao, Bingbing [1 ,2 ]
Zheng, Fuyin [1 ,2 ]
Mu, Zhongde [1 ,2 ]
Zhao, Yuanjin [1 ,2 ]
Gu, Zhongze [1 ,2 ,3 ,4 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Natl Demonstrat Ctr Expt Biomed Engn Educ, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ Suzhou, Lab Environm, Suzhou 215123, Peoples R China
[4] Southeast Univ Suzhou, Biosafety Res Inst, Suzhou 215123, Peoples R China
基金
美国国家科学基金会;
关键词
butterfly wings; anisotropic nanostructure; chemical treatment; cell alignment; CHITOSAN; TISSUE; SCAFFOLDS; ADHESION; SCALES; DELIVERY;
D O I
10.3390/polym9090386
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In recent years, multiple types of substrates have been applied for regulating cell orientation. Among them, surface topography patterns with grooves or ridges have been widely utilizing for cell culturing. However, this construction is still complicated, low cost-effective and exhibits some technological limitations with either "top-down" or "bottom-up" approaches. Here, a simple and green method was developed by utilizing butterfly wings (Morpho menelaus, Papilio ulysses telegonus and Ornithoptera croesus lydius) with natural anisotropic nanostructures to generate cell alignment. A two-step chemical treatment was proposed to achieve more hydrophilic butterfly wings preceding cell culturing. Furthermore, calcein acetoxymethyl ester (Calcein-AM) staining and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay results demonstrated the appropriate viability of NIH-3T3 fibroblast cells on those butterfly wings. Moreover, the cells displayed a high degree of alignment in each specimen of these wings. We anticipate that those originating from natural butterfly wings will pose important applications for tissue engineering.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Chitin and chitosan in selected biomedical applications [J].
Anitha, A. ;
Sowmya, S. ;
Kumar, P. T. Sudheesh ;
Deepthi, S. ;
Chennazhi, K. P. ;
Ehrlich, H. ;
Tsurkan, M. ;
Jayakumar, R. .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (09) :1644-1667
[2]  
[Anonymous], 2016, J NANOMATERIALS, DOI DOI 10.1155/2016/3795976
[3]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[4]  
Cary A.T., 2016, J OPT, V18
[5]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[6]   Chitosan nanofiber scaffold enhances hepatocyte adhesion and function [J].
Chu, Xue-Hui ;
Shi, Xiao-Lei ;
Feng, Zhang-Qi ;
Gu, Zhong-Ze ;
Ding, Yi-Tao .
BIOTECHNOLOGY LETTERS, 2009, 31 (03) :347-352
[7]   New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior [J].
Cohen-Arazi, Naomi ;
Domb, Abraham J. ;
Katzhendler, Jeoshua .
POLYMERS, 2010, 2 (04) :418-439
[8]   Anisotropic Light Transport in White Beetle Scales [J].
Cortese, Lorenzo ;
Pattelli, Lorenzo ;
Utel, Francesco ;
Vignolini, Silvia ;
Burresi, Matteo ;
Wiersma, Diederik S. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (10) :1337-1341
[9]   Thermodynamic Underpinnings of Cell Alignment on Controlled Topographies [J].
Ding, Yifu ;
Sun, Jirun ;
Ro, Hyun Wook ;
Wang, Zhen ;
Zhou, Jing ;
Lin, Nancy J. ;
Cicerone, Marcus T. ;
Soles, Christopher L. ;
Lin-Gibson, Sheng .
ADVANCED MATERIALS, 2011, 23 (03) :421-425
[10]   Enhancing the Compatibility, Hydrophilicity and Mechanical Properties of Polysulfone Ultrafiltration Membranes with Lignocellulose Nanofibrils [J].
Ding, Zhaodong ;
Liu, Xuejiao ;
Liu, Yang ;
Zhang, Liping .
POLYMERS, 2016, 8 (10)